You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book reports on the implementation of evolutionary-game theory in the design of distributed optimization-based controllers. First, it discusses how the classical population-game approach can contribute to and complement the design of optimization-based controllers. It shows how the features of this approach can be exploited to extend their capabilities in the solution of distributed optimization problems, and examines density games in order to consider multiple coupled constraints and preserve the non-centralized information requirements. Furthermore, it establishes a close relationship between the possible interactions among agents in a population with constrained information sharing a...
This book presents examples of modern optimization algorithms. The focus is on a clear understanding of underlying studied problems, understanding described algorithms by a broad range of scientists and providing (computational) examples that a reader can easily repeat.
The contents of this book comprise an appropriate background to start working and doing research on mean-field-type control and game theory. To make the exposition and explanation even easier, we first study the deterministic optimal control and differential linear-quadratic games. Then, we progressively add complexity step-by-step and little-by-little to the problem settings until we finally study and analyze mean-field-type control and game problems incorporating several stochastic processes, e.g., Brownian motions, Poisson jumps, and random coefficients. We go beyond the Nash equilibrium, which provides a solution for non- cooperative games, by analyzing other game-theoretical concepts su...
This book presents recent research on probabilistic methods in economics, from machine learning to statistical analysis. Economics is a very important – and at the same a very difficult discipline. It is not easy to predict how an economy will evolve or to identify the measures needed to make an economy prosper. One of the main reasons for this is the high level of uncertainty: different difficult-to-predict events can influence the future economic behavior. To make good predictions and reasonable recommendations, this uncertainty has to be taken into account. In the past, most related research results were based on using traditional techniques from probability and statistics, such as p-va...
This work presents a real-time dynamic pricing framework for future electricity markets. Deduced by first-principles analysis of physical, economic, and communication constraints within the power system, the proposed feedback control mechanism ensures both closed-loop system stability and economic efficiency at any given time. The resulting price signals are able to incentivize competitive market participants to eliminate spatio-temporal shortages in power supply quickly and purposively.
This book deals with optimization methods as tools for decision making and control in the presence of model uncertainty. It is oriented to the use of these tools in engineering, specifically in automatic control design with all its components: analysis of dynamical systems, identification problems, and feedback control design. Developments in Model-Based Optimization and Control takes advantage of optimization-based formulations for such classical feedback design objectives as stability, performance and feasibility, afforded by the established body of results and methodologies constituting optimal control theory. It makes particular use of the popular formulation known as predictive control ...
This book presents a set of approaches for the real-time monitoring and control of drinking-water networks based on advanced information and communication technologies. It shows the reader how to achieve significant improvements in efficiency in terms of water use, energy consumption, water loss minimization, and water quality guarantees. The methods and approaches presented are illustrated and have been applied using real-life pilot demonstrations based on the drinking-water network in Barcelona, Spain. The proposed approaches and tools cover: • decision-making support for real-time optimal control of water transport networks, explaining how stochastic model predictive control algorithms ...
Statistical Thinking in Clinical Trials combines a relatively small number of key statistical principles and several instructive clinical trials to gently guide the reader through the statistical thinking needed in clinical trials. Randomization is the cornerstone of clinical trials and randomization-based inference is the cornerstone of this book. Read this book to learn the elegance and simplicity of re-randomization tests as the basis for statistical inference (the analyze as you randomize principle) and see how re-randomization tests can save a trial that required an unplanned, mid-course design change. Other principles enable the reader to quickly and confidently check calculations with...
This volume is based on lectures delivered at the 2020 AMS Short Course “Mean Field Games: Agent Based Models to Nash Equilibria,” held January 13–14, 2020, in Denver, Colorado. Mean field game theory offers a robust methodology for studying large systems of interacting rational agents. It has been extraordinarily successful and has continued to develop since its inception. The six chapters that make up this volume provide an overview of the subject, from the foundations of the theory to applications in economics and finance, including computational aspects. The reader will find a pedagogical introduction to the main ingredients, from the forward-backward mean field game system to the master equation. Also included are two detailed chapters on the connection between finite games and mean field games, with a pedestrian description of the different methods available to solve the convergence problem. The volume concludes with two contributions on applications of mean field games and on existing numerical methods, with an opening to machine learning techniques.
This book describes the development of innovative non-centralized optimization-based control schemes to solve economic dispatch problems of large-scale energy systems. Particularly, it focuses on communication and cooperation processes of local controllers, which are integral parts of such schemes. The economic dispatch problem, which is formulated as a convex optimization problem with edge‐based coupling constraints, is solved by using methodologies in distributed optimization over time-varying networks, together with distributed model predictive control, and system partitioning techniques. At first, the book describes two distributed optimization methods, which are iterative and require ...