You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The goal of this book is to present a portrait of the n n-dimensional Cremona group with an emphasis on the 2-dimensional case. After recalling some crucial tools, the book describes a naturally defined infinite dimensional hyperbolic space on which the Cremona group acts. This space plays a fundamental role in the study of Cremona groups, as it allows one to apply tools from geometric group theory to explore properties of the subgroups of the Cremona group as well as the degree growth and dynamical behavior of birational transformations. The book describes natural topologies on the Cremona group, codifies the notion of algebraic subgroups of the Cremona groups and finishes with a chapter on the dynamics of their actions. This book is aimed at graduate students and researchers in algebraic geometry who are interested in birational geometry and its interactions with geometric group theory and dynamical systems.
Francia, 1686. Sulle scale di rue de la Grosse Margot, nei quartieri popolari di Parigi, vengono rinvenuti i cadaveri di due guardie del re. La Reynie, il luogotenente della polizia, non ha dubbi su chi sia il colpevole: la sedicenne Julie d'Aubigny. Orecchio assoluto, ribattezzata l'Angelo della Morte, «forte come un uomo e bella come una donna», veste panni maschili ed è anche una spadaccina infallibile, perché il padre l'ha educata come un ragazzo. Cresciuta alla corte del potente Conte d'Armagnac, che ne fa prima il suo giullare e poi la sua amante, Julie si ribella agli obblighi di un matrimonio di convenienza e fugge nella notte, per vivere alla giornata con il complice Séranne. B...
The theory of holomorphic dynamical systems is a subject of increasing interest in mathematics, both for its challenging problems and for its connections with other branches of pure and applied mathematics. A holomorphic dynamical system is the datum of a complex variety and a holomorphic object (such as a self-map or a vector ?eld) acting on it. The study of a holomorphic dynamical system consists in describing the asymptotic behavior of the system, associating it with some invariant objects (easy to compute) which describe the dynamics and classify the possible holomorphic dynamical systems supported by a given manifold. The behavior of a holomorphic dynamical system is pretty much related...
None
The scientific personalities of Luigi Cremona, Eugenio Beltrami, Salvatore Pincherle, Federigo Enriques, Beppo Levi, Giuseppe Vitali, Beniamino Segre and of several other mathematicians who worked in Bologna in the century 1861–1960 are examined by different authors, in some cases providing different view points. Most contributions in the volume are historical; they are reproductions of original documents or studies on an original work and its impact on later research. The achievements of other mathematicians are investigated for their present-day importance.
How did medieval people define themselves? And how did they balance their identities as individuals with the demands of their communities? Lives, Identities and Histories in the Central Middle Ages intertwines the study of identities with current scholarship to reveal their multi-layered, sometimes contradictory dimensions. Drawing on a wide range of sources, from legal texts to hagiographies and biblical exegesis, and diverse cultural and social approaches, this volume enriches our understanding of medieval people's identities - as defined by themselves and by others, as individuals and as members of groups and communities. It adopts a complex and wide-ranging understanding of what constituted 'identities' beyond family and regional or national belonging, such as social status, gender, age, literacy levels, and displacement. New figures and new concepts of 'identities' thus emerge from the dialogue between the chapters, through an approach based on life-histories, lived experience, ethnogenesis, theories of diaspora, cultural memory and generational change.
The major part of this volume is devoted to the study of the sixth Painleve equation through a variety of approaches, namely elliptic representation, the classification of algebraic solutions and so-called ``dessins d'enfants'' deformations, affine Weyl group symmetries and dynamics using the techniques of Riemann-Hilbert theory and those of algebraic geometry. Discrete Painleve equations and higher order equations, including the mKdV hierarchy and its Lax pair and a WKB analysis of perturbed Noumi-Yamada systems, are given a place of study, as well as theoretical settings in Galois theory for linear and non-linear differential equations, difference and $q$-difference equations with applications to Painleve equations and to integrability or non-integrability of certain Hamiltonian systems.
Sono qui raccolte le lettere scritte da Marina Cvetaeva dal dicembre 1925, anno in cui lasciò la Boemia per la Francia (Parigi, dapprima, poi sempre più miseri sobborghi della capitale), al 31 agosto 1941, giorno in cui morì suicida a Elabuga, una cittadina della Repubblica Autonoma Tatara dove era sfollata insieme con il figlio (il libro si chiude con le tre brevi lettere che la Cvetaeva lasciò come messaggi d’addio). Strutturato in due sezioni – le lettere dalla Francia fino al giugno 1939 e dall’Unione Sovietica fino all’agosto 1941 –, il volume ricostruisce le fasi più drammatiche della vicenda di Marina Cvetaeva: la miseria e l’isolamento in cui, dopo l’iniziale succe...
Un viaggio nella wilderness americana attraverso gli stupefacenti deserti rocciosi del New Mexico e dell’Arizona dove ancora oggi sono confinati i nativi delle tribù dei navajo e degli hopi, fino a raggiungere la mitica Monument Valley e poi più a nord lo Utah con i suoi paesaggi mozzafiato di Canyonlands (dove fecero il salto nel vuoto Thelma e Louise), Arches e il Capitol Reef National Park con i suoi numerosi itinerari paesaggistici, per poi tornare nella cosiddetta “terra dell’incanto” del New Mexico per visitare i due gioielli di Taos e Santa Fe. Un viaggio in una zona spettacolare per scoprire la bellezza di una natura selvaggia ed incontaminata. Ma un viaggio che ci dà lo s...