You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Introduces an original approach to foundations of mathematics, departing from Gödel and Tarski and spanning many different areas of logic.
"An introduction to the life and thought of Kurt Gödel, who transformed our conception of math forever"--Provided by publisher.
This Element takes a deep dive into Gödel's 1931 paper giving the first presentation of the Incompleteness Theorems, opening up completely passages in it that might possibly puzzle the student, such as the mysterious footnote 48a. It considers the main ingredients of Gödel's proof: arithmetization, strong representability, and the Fixed Point Theorem in a layered fashion, returning to their various aspects: semantic, syntactic, computational, philosophical and mathematical, as the topic arises. It samples some of the most important proofs of the Incompleteness Theorems, e.g. due to Kuratowski, Smullyan and Robinson, as well as newer proofs, also of other independent statements, due to H. Friedman, Weiermann and Paris-Harrington. It examines the question whether the incompleteness of e.g. Peano Arithmetic gives immediately the undecidability of the Entscheidungsproblem, as Kripke has recently argued. It considers set-theoretical incompleteness, and finally considers some of the philosophical consequences considered in the literature.
From one of the U.K.'s most dazzling authors comes a brutal and funny novel about a pair of fraudulent psychic mediums that is itself an elaborate con game between fact and fiction, life and death--a book as verbally acrobatic as it is emotionally intense.
Leading thinkers in mathematics, philosophy and education offer new insights into the fundamental question: what is a mathematical concept?
This collection of papers from various areas of mathematical logic showcases the remarkable breadth and richness of the field. Leading authors reveal how contemporary technical results touch upon foundational questions about the nature of mathematics. Highlights of the volume include: a history of Tennenbaum's theorem in arithmetic; a number of papers on Tennenbaum phenomena in weak arithmetics as well as on other aspects of arithmetics, such as interpretability; the transcript of Gödel's previously unpublished 1972-1975 conversations with Sue Toledo, along with an appreciation of the same by Curtis Franks; Hugh Woodin's paper arguing against the generic multiverse view; Anne Troelstra's history of intuitionism through 1991; and Aki Kanamori's history of the Suslin problem in set theory. The book provides a historical and philosophical treatment of particular theorems in arithmetic and set theory, and is ideal for researchers and graduate students in mathematical logic and philosophy of mathematics.
To find "criteria of simplicity" was the goal of David Hilbert's recently discovered twenty-fourth problem on his renowned list of open problems given at the 1900 International Congress of Mathematicians in Paris. At the same time, simplicity and economy of means are powerful impulses in the creation of artworks. This was an inspiration for a conference, titled the same as this volume, that took place at the Graduate Center of the City University of New York in April of 2013. This volume includes selected lectures presented at the conference, and additional contributions offering diverse perspectives from art and architecture, the philosophy and history of mathematics, and current mathematical practice.
Richard Tieszen analyzes, develops, and defends the writings of Kurt Gödel (1906-1978) on the philosophy and foundations of mathematics and logic. Gödel's relation to the work of Plato, Leibniz, Husserl, and Kant is examined, and a new type of platonic rationalism that requires rational intuition, called 'constituted platonism', is proposed.
This volume is based on the talks given at the Workshop on Infinity and Truth held at the Institute for Mathematical Sciences, National University of Singapore, from 25 to 29 July 2011. The chapters cover topics in mathematical and philosophical logic that examine various aspects of the foundations of mathematics. The theme of the volume focuses on two basic foundational questions: (i) What is the nature of mathematical truth and how does one resolve questions that are formally unsolvable within the Zermelo-Fraenkel Set Theory with the Axiom of Choice, and (ii) Do the discoveries in mathematics provide evidence favoring one philosophical view over others? These issues are discussed from the vantage point of recent progress in foundational studies.The final chapter features questions proposed by the participants of the Workshop that will drive foundational research. The wide range of topics covered here will be of interest to students, researchers and mathematicians concerned with issues in the foundations of mathematics.
This book constitutes the refereed proceedings of the 13th Conference on Computability in Europe, CiE 2017, held in Turku, Finland, in June 2017. The 24 revised full papers and 12 invited papers were carefully reviewed and selected from 69 submissions. The conference CiE 2016 has six special sessions, namly: algorithmics for biology; combinatorics and algorithmics on words; computability in analysis, algebra, and geometry; cryptography and information theory; formal languages and automata theory; and history and philosophy of computing.