You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
None
This work discusses the value of dynamic programming as a method of optimization for the sequential phenomena encountered in economic studies or in advanced technological programs such as those associated with space flights. The dynamic programs which are considered are defined for a deterministic universe, or one with probabilities; both categories are of equal importance in the practice of operations research or of scientific management.
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator ...
Mathematics in Science and Engineering, Volume 30: Stability of Motion deals with the problem of stability of motion. This volume investigates the problem of stability of the unperturbed motion in cases such as the system of differential equations for the perturbed motion is autonomie and the characteristic equation of the linear system that gives the first approximation has a double zero root. When the order of the system is larger than two (n > 2), all the remaining roots have negative real parts. The double root corresponds to a multiple elementary divisor of the characteristic matrix. This book is a good reference for mathematicians, students, and specialists conducting work on the stability of motion.
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator ...
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator ...
Mathematics in Science and Engineering, Volume 31: Topics in Optimization compiles contributions to the field of optimization of dynamical systems. This book is organized into two parts. Part 1 covers reported investigations that are based on variational techniques and constitute essentially extensions of the classical calculus of variations. The contributions to optimal control theory and its applications, where the arguments are primarily geometric in nature, are discussed in Part 2. This volume specifically discusses the inequalities in a variational problem, singular extremals, mathematical foundations of system optimization, and synthesis of optimal controls. This publication is recommended for both theoreticians and practitioners.
Introduction to the Mathematical Theory of Control Processes