You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The book retains its strong conceptual approach, clearly examining the mathematical underpinnings of FEM, and providing a general approach of engineering application areas.Known for its detailed, carefully selected example problems and extensive selection of homework problems, the author has comprehensively covered a wide range of engineering areas making the book approriate for all engineering majors, and underscores the wide range of use FEM has in the professional world
The second edition of An Introduction to Nonlinear Finite Element Analysis has the same objective as the first edition, namely, to facilitate an easy and thorough understanding of the details that are involved in the theoretical formulation, finite element model development, and solutions of nonlinear problems. The book offers an easy-to-understand treatment of the subject of nonlinear finite element analysis, which includes element development from mathematical models and numerical evaluation of the underlying physics. The new edition is extensively reorganized and contains substantial amounts of new material. Chapter 1 in the second edition contains a section on applied functional analysis...
This introduction to the basic mathematical theory of the finite element method is geared toward readers with limited mathematical backgrounds. Its coherent demonstrations explain the use of these techniques in developing the theory of finite elements, with detailed proofs of the major theorems and numerous examples. 1976 edition.
This introduction to the theory of Sobolev spaces and Hilbert space methods in partial differential equations is geared toward readers of modest mathematical backgrounds. It offers coherent, accessible demonstrations of the use of these techniques in developing the foundations of the theory of finite element approximations. J. T. Oden is Director of the Institute for Computational Engineering & Sciences (ICES) at the University of Texas at Austin, and J. N. Reddy is a Professor of Engineering at Texas A&M University. They developed this essentially self-contained text from their seminars and courses for students with diverse educational backgrounds. Their effective presentation begins with introductory accounts of the theory of distributions, Sobolev spaces, intermediate spaces and duality, the theory of elliptic equations, and variational boundary value problems. The second half of the text explores the theory of finite element interpolation, finite element methods for elliptic equations, and finite element methods for initial boundary value problems. Detailed proofs of the major theorems appear throughout the text, in addition to numerous examples.
This best-selling textbook presents the concepts of continuum mechanics, and the second edition includes additional explanations, examples and exercises.
This text presents a complete treatment of the theory and analysis of elastic plates. It provides detailed coverage of classic and shear deformation plate theories and their solutions by analytical as well as numerical methods for bending, buckling and natural vibrations. Analytical solutions are based on the Navier and Levy solution method, and numerical solutions are based on the Rayleigh-Ritz methods and finite element method. The author address a range of topics, including basic equations of elasticity, virtual work and energy principles, cylindrical bending of plates, rectangular plates and an introduction to the finite element method with applications to plates.