You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The 14th International Conference on Laser Spectroscopy brought together spectroscopists from all over the world working in the very diverse and still growing field of laser spectroscopy. Spanning the area from fundamental issues (such as experiments testing the foundations of quantum mechanics), to atomic and molecular spectroscopy, precision spectroscopy and matter wave optics to Bose-Einstein condensation, covering quantum optics and the new field of quantum computation and quantum information, up to nonlinear optics and ultrashort pulse spectroscopy, and medical applications of laser spectroscopy, the conference addressed a large number of modern scientific issues at the highest level.
Published on the occasion of Theodor Hänsch's 60th Birthday emphasis is placed on precision related to results in a variety of fields, such as atomic clocks, frequency standards, and the measurement of physical constants in atomic physics. Furthermore, illustrations and engineering applications of the fundamentals of quantum mechanics are widely covered. It has contributions by Nobel prize winners Norman F. Ramsey, Steven Chu, and Carl E. Wieman.
This book targets computer scientists and engineers who are familiar with concepts in classical computer systems but are curious to learn the general architecture of quantum computing systems. It gives a concise presentation of this new paradigm of computing from a computer systems' point of view without assuming any background in quantum mechanics. As such, it is divided into two parts. The first part of the book provides a gentle overview on the fundamental principles of the quantum theory and their implications for computing. The second part is devoted to state-of-the-art research in designing practical quantum programs, building a scalable software systems stack, and controlling quantum hardware components. Most chapters end with a summary and an outlook for future directions. This book celebrates the remarkable progress that scientists across disciplines have made in the past decades and reveals what roles computer scientists and engineers can play to enable practical-scale quantum computing.
The XV International Conference on Laser Spectroscopy brought together spectroscopists from all over the world working in the very diverse and still growing field of laser spectroscopy. It addressed a large number of modern scientific issues at the highest level.
"Quantum computation and information is a new, rapidly developing interdisciplinary field. Therefore, it is not easy to understand its fundamental concepts and central results without facing numerous technical details. This book provides the reader a useful and not-too-heavy guide. It offers a simple and self-contained introduction; no previous knowledge of quantum mechanics or classical computation is required.
This book provides a comprehensive view of the contemporary methods for quantum-light engineering. In particular, it addresses different technological branches and therefore allows the reader to quickly identify the best technology - application match. Non-classical light is a versatile tool, proven to be an intrinsic part of various quantum technologies. Its historical significance has made it the subject of many text books written both from theoretical and experimental point of view. This book takes another perspective by giving an insight to modern technologies used to generate and manipulate quantum light.
This volume comprises a collection of invited and selected contributions presented at the 16th International Conference on Laser Spectroscopy in Palm Cove, Queensland, Australia, 13-18 July 2003. The papers report the latest and most exciting developments in laser spectroscopy and related areas: new ultra-precise spectroscopic measurements based on optical frequency combs including tests of the stability of the fundamental constants; the first realization of Bose-Einstein condensation in cesium and ytterbium; the behavior of ultra-cold bosons and fermions in optical lattices; the production of ultra-cold cesium, helium and fermionic lithium molecules; the production and coherent transport of ultra-cold atoms in microtraps on the surface of chips; the implementation of one- and two-qubit quantum algorithms and experiments towards a scalable quantum computer based on trapped ions; and new medical applications of laser spectroscopy.The proceedings have been selected for coverage in: ? Index to Scientific & Technical Proceedings? (ISTP? / ISI Proceedings)? Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)? CC Proceedings ? Engineering & Physical Science
During the last ten years Quantum Information Processing and Communication (QIPC) has established itself as one of the new hot topic fields in physics, with the potential to revolutionize many areas of science and technology. QIPC replaces the laws of classical physics applied to computation and communication with the more fundamental laws of quantum mechanics. This becomes increasingly important due to technological progress going down to smaller and smaller scales where quantum effects start to be dominant. In addition to its fundamental nature, QIPC promises to advance computing power beyond the capabilities of any classical computer, to guarantee secure communication and establish direct...
Ion trapping was first accomplished in Europe more than 50 years ago. Since then, research and development have increased steadily, and the last decades have seen a remarkable growth in applications, mainly due to the improvement of laser-based techniques for spectroscopy, cooling and the manipulation of ions. Nowadays ion trapping plays a crucial role in a wide range of disciplines, including atomic and plasma physics, chemistry, high precision measurement, high energy physics and the emerging field of quantum technologies. This book presents lectures and reports from the Enrico Fermi School ‘Ion Traps for Tomorrow's Applications’, held in Varenna, Italy, in July 2013. Reflecting the aim of the school to exploit diversity and stimulate cross fertilization, the selected topics and highlights in this book partly review the wide range of subjects discussed during the course, while providing an overview of this topical domain. As well as providing a useful reference guide, the book will be a source of inspiration for all those planning to work on ion trapping in the future.
The field of quantum computing has experienced rapid development and many different experimental and theoretical groups have emerged worldwide.This book presents the key elements of quantum computation and communication theories and their implementation in an easy-to-read manner for readers coming from physics, mathematics and computer science backgrounds. Integrating both theoretical aspects and experimental verifications of developing quantum computers, the author explains why particular mathematical methods, physical models and realistic implementations might provide critical steps towards achieving the final goal - constructing quantum computers and quantum networks. The book serves as an excellent introduction for new researchers and also provides a useful review for specialists in the field