You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The intention of this textbook is to provide both, the theoretical and computational tools that are necessary to investigate and to solve optimal control problems with ordinary differential equations and differential-algebraic equations. An emphasis is placed on the interplay between the continuous optimal control problem, which typically is defined and analyzed in a Banach space setting, and discrete optimal control problems, which are obtained by discretization and lead to finite dimensional optimization problems. The book addresses primarily master and PhD students as well as researchers in applied mathematics, but also engineers or scientists with a good background in mathematics and interest in optimal control. The theoretical parts of the book require some knowledge of functional analysis, the numerically oriented parts require knowledge from linear algebra and numerical analysis. Examples are provided for illustration purposes.
"Whatever regrets may be, we have done our best." (Sir Ernest Shackleton, turning back on 9 January 1909 at 88°23' South.) Brahms struggled for 20 years to write his first symphony. Compared to this, the 10 years we have been working on these two volumes may even appear short. This second volume treats stiff differential equations and differential alge braic equations. It contains three chapters: Chapter IV on one-step (Runge Kutta) methods for stiff problems, Chapter Von multistep methods for stiff problems, and Chapter VI on singular perturbation and differential-algebraic equations. Each chapter is divided into sections. Usually the first sections of a chapter are of an introductory natu...
A concise introduction to numerical methodsand the mathematical framework neededto understand their performance Numerical Solution of Ordinary Differential Equations presents a complete and easy-to-follow introduction to classical topics in the numerical solution of ordinary differential equations. The book's approach not only explains the presented mathematics, but also helps readers understand how these numerical methods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringing together and categorizing different types of problems in order to help readers comprehend the applications of ordinary differential equations. In addition, the authors' ...
Differential-algebraic equations are the most natural way to mathematically model many complex systems in science and engineering. Once the model is derived, it is important to optimize the design parameters and control it in the most robust and efficient way to maximize performance. This book presents the latest theory and numerical methods for the optimal control of differential-algebraic equations. The following features are presented in a readable fashion so the results are accessible to the widest audience: the most recent theory, written by leading experts from a number of academic and nonacademic areas and departments; several state-of-the-art numerical methods; and real-world applications.
This book provides a unified view of tomographic techniques, a common mathematical framework, and an in-depth treatment of reconstruction algorithms. It focuses on the reconstruction of a function from line or plane integrals, with special emphasis on applications in radiology, science, and engineering. The Mathematics of Computerized Tomography covers the relevant mathematical theory of the Radon transform and related transforms and also studies more practical questions such as stability, sampling, resolution, and accuracy. Quite a bit of attention is given to the derivation, analysis, and practical examination of reconstruction algorithms, for both standard problems and problems with incomplete data. Audience: applied mathematicians, physicists, and engineers working in image reconstruction.
"Analytical System Dynamics: Modeling and Simulation" combines results from analytical mechanics and system dynamics to develop an approach to modeling constrained multidiscipline dynamic systems. This combination yields a modeling technique based on the energy method of Lagrange, which in turn, results in a set of differential-algebraic equations that are suitable for numerical integration. Using the modeling approach presented in this book enables one to model and simulate systems as diverse as a six-link, closed-loop mechanism or a transistor power amplifier.
Many physical problems are most naturally described by systems of differential and algebraic equations. This book describes some of the places where differential-algebraic equations (DAE's) occur. The basic mathematical theory for these equations is developed and numerical methods are presented and analyzed. Examples drawn from a variety of applications are used to motivate and illustrate the concepts and techniques. This classic edition, originally published in 1989, is the only general DAE book available. It not only develops guidelines for choosing different numerical methods, it is the first book to discuss DAE codes, including the popular DASSL code. An extensive discussion of backward ...
Numerical simulation is rapidly becoming an important part of the VLSI design process, allowing the engineer to test, evaluate, and optimize various aspects of chip design without resorting to the costly and time-consuming process of fabricating prototypes. This procedure not only accelerates the design process, but also improves the end product, since it is economically feasible to numerically simulate many more options than might otherwise be considered. With the enhanced computing power of today's computers, more sophisticated models are now being developed. This volume contains the proceedings of the AMS-SIAM Summer Seminar on Computational Aspects of VLSI Design, held at the Institute for Mathematics and Its Applications at the University of Minnesota, in the spring of 1987. The seminar featured presentations by some of the top experts working in this area. Their contributions to this volume form an excellent overview of the mathematical and computational problems arising in this area.