You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In response to the growing interest in bounding error approaches, the editors of this volume offer the first collection of papers to describe advances in techniques and applications of bounding of the parameters, or state variables, of uncertain dynamical systems. Contributors explore the application of the bounding approach as an alternative to the probabilistic analysis of such systems, relating its importance to robust control-system design.
System Identification shows the student reader how to approach the system identification problem in a systematic fashion. The process is divided into three basic steps: experimental design and data collection; model structure selection and parameter estimation; and model validation, each of which is the subject of one or more parts of the text. Following an introduction on system theory, particularly in relation to model representation and model properties, the book contains four parts covering: • data-based identification – non-parametric methods for use when prior system knowledge is very limited; • time-invariant identification for systems with constant parameters; • time-varying ...
Researchers in the natural sciences are faced with problems that require a novel approach to improve the quality of forecasts of processes that are sensitive to environmental conditions. Nonlinearity of a system may significantly complicate the predictability of future states: a small variation of parameters can dramatically change the dynamics, while sensitive dependence of the initial state may severely limit the predictability horizon. Uncertainties also play a role. This volume addresses such problems by using tools from chaos theory and systems theory, adapted for the analysis of problems in the environmental sciences. Sensitive dependence on the initial state (chaos) and the parameters are analyzed using methods such as Lyapunov exponents and Monte Carlo simulation. Uncertainty in the structure and the values of parameters of a model is studied in relation to processes that depend on the environmental conditions. These methods also apply to biology and economics. For research workers at universities and (semi)governmental institutes for the environment, agriculture, ecology, meteorology and water management, and theoretical economists.
Environmental quality is becoming an increasing concern in our society. In that context, waste and wastewater treatment, and more specifically biological wastewater treatment processes play an important role. In this book, we concentrate on the mathematical modelling of these processes. The main purpose is to provide the increasing number of professionals who are using models to design, optimise and control wastewater treatment processes with the necessary background for their activities of model building, selection and calibration. The book deals specifically with dynamic models because they allow us to describe the behaviour of treatment plants under the highly dynamic conditions that we w...
Support for addressing the on-going global changes needs solutions for new scientific problems which in turn require new concepts and tools. A key issue concerns a vast variety of irreducible uncertainties, including extreme events of high multidimensional consequences, e.g., the climate change. The dilemma is concerned with enormous costs versus massive uncertainties of extreme impacts. Traditional scientific approaches rely on real observations and experiments. Yet no sufficient observations exist for new problems, and "pure" experiments, and learning by doing may be expensive, dangerous, or impossible. In addition, the available historical observations are often contaminated by past actions, and policies. Thus, tools are presented for the explicit treatment of uncertainties using "synthetic" information composed of available "hard" data from historical observations, the results of possible experiments, and scientific facts, as well as "soft" data from experts' opinions, and scenarios.
This book provides comprehensive insights into the biotechnological process of converting organic matter into biogas, which is an essential renewable energy resource for addressing challenges related to fossil fuel depletion and environmental pollution. It includes six chapters that cover a spectrum of topics, including approaches to biogas upgrading, the optimization of biogas production through examination, mathematical modeling, and applied calculations, the application of bacteriophages to enhance anaerobic digestion, and more.
This open access book, written by world experts in aquaponics and related technologies, provides the authoritative and comprehensive overview of the key aquaculture and hydroponic and other integrated systems, socio-economic and environmental aspects. Aquaponic systems, which combine aquaculture and vegetable food production offer alternative technology solutions for a world that is increasingly under stress through population growth, urbanisation, water shortages, land and soil degradation, environmental pollution, world hunger and climate change.
Climate change is expected to influence several productive sectors, the most significant of which is agriculture. Agriculture comprises an important sector of the global economy that includes crops, livestock, and seafood. Agriculture, aquaculture, and fisheries are closely linked to the climate, with changes in climatic conditions able to drastically affect animal and plant productivity, which in turn has a direct impact on human well-being. Impacts of Climate Change on Agriculture and Aquaculture is a critical scholarly publication that provides an integrated assessment of climate change impacts on agriculture, aquaculture, and fisheries and explores a set of strategies to secure sustainab...
This work investigated two different approaches to optimize biological sulphate reduction in order to develop a process control strategy to optimize the input of an electron donor and to study how to increase the feasibility of using a cheap carbon source. Feast/famine regimes, applied to design the control strategy, were shown to induce the accumulation of storage compounds in the sulphate reducing biomass. This study showed that delays in the response time and a high control gain can be considered as the most critical factors affecting a sulphide control strategy in bioreactors. The delays are caused by the induction of different metabolic pathways in the anaerobic sludge, including the ac...
At the dawn of the 21st century, biotechnology is emerging as a key enabling technology for sustainable environmental protection and stewardship. Biotechnology for the Environment: Wastewater Treatment and Modeling, Waste Gas Handling illustrates the current technological applications of microorganisms in wastewater treatment and in the control of waste gas emissions. In the first section of the book special emphasis is placed on the use of rigorous mathematical and conceptual models for an in-depth understanding of the complex biology and engineering aspects underlying the operation of modern wastewater treatment installations. The second part addresses waste gas biofiltration, an expanding...