You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Cardio-oncology is a medical subspecialty concerned with the diagnosis and treatment of cardiovascular disease (CVD) and organ failure mediated by micro- to macro-circulation defects in cancer patients and survivors. The risk of CVD in cancer survivors is eight times higher than the general population, and the relative risk of coronary artery disease and heart failure (HF) is 10 times and 15 times higher, respectively, compared to their siblings without cancer. It is important to note that cancer treatments including chemotherapy and radiation can lead to both short- (< 1 year) and long-term (> 5 years) cardiovascular complications. Previously, Dr. Edward T.H. Yeh initiated the MD Anderson P...
This book covers the latest research development in heart valve biomechanics and bioengineering, with an emphasis on novel experimentation, computational simulation, and applications in heart valve bioengineering. The most current research accomplishments are covered in detail, including novel concepts in valvular viscoelasticity, fibril/molecular mechanisms of tissue behavior, fibril kinematics-based constitutive models, mechano-interaction of valvular interstitial and endothelial cells, biomechanical behavior of acellular valves and tissue engineered valves, novel bioreactor designs, biomechanics of transcatheter valves, and 3D heart valve printing. This is an ideal book for biomedical engineers, biomechanics, surgeons, clinicians, business managers in the biomedical industry, graduate and undergraduate students studying biomedical engineering, and medical students.
Over the last century, medicine has come out of the "black bag" and emerged as one of the most dynamic and advanced fields of development in science and technology. Today, biomedical engineering plays a critical role in patient diagnosis, care, and rehabilitation. As such, the field encompasses a wide range of disciplines, from biology and physiology to material science and nanotechnology. Reflecting the enormous growth and change in biomedical engineering during the infancy of the 21st century, The Biomedical Engineering Handbook enters its third edition as a set of three carefully focused and conveniently organized books. Reviewing applications at the leading edge of modern biomedical engi...
The book will be written by the experts in the disease including imaging, interventional cardiology and surgical valve expertise. The book has five main sections: Aortic Valve Disease Mitral Valve Disease Tricuspid Valve Disease Pulmonic Valve Disease Multimodality Imaging The main objectives of the book are: 1- to provide the main guidelines to clinicians on how to identify and diagnose valvular heart disease 2- to provide an overview of what the near future will bring in the diagnosis, prevention and risk stratification of patients to catheter versus surgical approaches 3- to outline the possible implications for medical therapies in slowing progression of calcific aortic valve disease and myxomatous mitral valve disease
Due to population aging, calcific aortic valve disease (CAVD) has become the most common heart valve disease in Western countries. No therapies exist to slow this disease progression, and surgical valve replacement is the only effective treatment. Calcific Aortic Valve Disease covers the contemporary understanding of basic valve biology and the mechanisms of CAVD, provides novel insights into the genetics, proteomics, and metabolomics of CAVD, depicts new strategies in heart valve tissue engineering and regenerative medicine, and explores current treatment approaches. As we are on the verge of understanding the mechanisms of CAVD, we hope that this book will enable readers to comprehend our current knowledge and focus on the possibility of preventing disease progression in the future.
Mechanics of Biological Systems and Materials represents one of eight volumes of technical papers presented at the Society for Experimental Mechanics Annual Conference & Exposition on Experimental and Applied Mechanics, held at Uncasville, Connecticut, June 13-16, 2011. The full set of proceedings also includes volumes on Dynamic Behavior of Materials, Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials, MEMS and Nanotechnology; Optical Measurements, Modeling and, Metrology; Experimental and Applied Mechanics, Thermomechanics and Infra-Red Imaging, and Engineering Applications of Residual Stress.
Mechanics of Biological Systems and Materials, Volume 4: Proceedings of the 2013 Annual Conference on Experimental and Applied Mechanics, the fourth volume of eight from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of areas, including: Structure-Function & Design of Soft Biological Tissues Soft Tissue Biomechanics: Nanoscale to Physiological Control Bone Mechanics Biomimetic Materials Residual Stresses in Biological Materials Cells Cellulose Materials
The cellular mechanisms of valvular heart disease have not been elucidated until the last decade. To date, there is no medical therapy that is FDA or CE mark approved for the treatment and/or slowing the progression of this disease. This textbook will provide the cellular basis for medical therapy. Over the past decade, research laboratories are more and more evolving into valvular biology programs from the traditional vascular biology. The science between the two disciplines, although has several similarities has unique cellular targets secondary to the embryologic derivation of the heart valve and the hemodynamics involved in the understanding of this disorders. This textbook will be a natural progression from the recently published text Cardiac Valvular Medicine, Springer 2012. This new textbook will provide the cellular details and the more basic molecular biology approaches towards understanding the disease, providing novel cellular targets and finally developing future clinical trials in the medical treatment of valvular heart disease in the future.
Increasingly viewed as the future of medicine, the field of tissue engineering is still in its infancy. As evidenced in both the scientific and popular press, there exists considerable excitement surrounding the strategy of regenerative medicine. To achieve its highest potential, a series of technological advances must be made. Putting the numerous
Mechanics of Biological Systems and Materials, Volume 5: Proceedings of the 2012 Annual Conference on Experimental and Applied Mechanics represents one of seven volumes of technical papers presented at the Society for Experimental Mechanics SEM 12th International Congress & Exposition on Experimental and Applied Mechanics, held at Costa Mesa, California, June 11-14, 2012. The full set of proceedings also includes volumes on Dynamic Behavior of Materials, Challenges in Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials, Imaging Methods for Novel Materials and Challenging Applications, Experimental and Applied Mechanics, MEMS and Nanotechnology and, Composite Materials and Joining Technologies for Composites.