You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Microstrip patch antennas have become the favorite of antenna designers because of its versatility and advantages of planar profile, ease of fabrication, compatibility with integrated circuit technology, and conformability with a shaped surface. As there is currently an urgent need for graduate students and practicing engineers to gain an in-depth understanding of this subject, this book was written with this purpose in mind. The authors are IEEE Fellows who have made significant contributions to their fields of expertise. Professor K F Lee was the recipient of the 2009 John Kraus Antenna Award of the IEEE Antennas and Propagation Society.
An essential text for both students and professionals, combining detailed theory with clear practical guidance This outstanding book explores a large spectrum of topics within microwave and radio frequency (RF) engineering, encompassing electromagnetic theory, microwave circuits and components. It provides thorough descriptions of the most common microwave test instruments and advises on semiconductor device modelling. With examples taken from the authors' own experience, this book also covers: network and signal theory; electronic technology with guided electromagnetic propagation; microwave circuits such as linear and non-linear circuits, resonant circuits and cavities, monolithic microwav...
An analysis of the physics of multiantenna systems Multiple-Input Multiple-Output (MIMO) technology is one of the current hot topics in emerging wireless technologies. This book fills the important need for an authoritative reference on the merits of MIMO systems based on physics and provides a sound theoretical basis for its practical implementation. The book also addresses the important issues related to broadband adaptive processing. Written by three internationally known researchers, Physics of Multiantenna Systems and Broadband Processing: Provides a thorough discussion of the physical and mathematical principles involved in MIMO and adaptive systems Examines the electromagnetic framewo...
This book is devoted to optical semiconductor devices and their numerous applications in telecommunications, optoelectronics, and consumer electronics-areas where signal processing or the transmission of signals across fiber optic cables is paramount. It introduces a new generation of devices that includes optical modulators, quantum well (QW) lasers, and photodiodes and explores new applications of more established devices such as semiconductor lasers, light-emitting diodes, and photodiodes. Mitsuo Fukuda examines the material properties, operation principles, fabrication, packaging, reliability, and applications of each device and offers a unique industrial perspective, discussing everythi...
The flagship monograph addressing the spheroidal wave function and its pertinence to computational electromagnetics Spheroidal Wave Functions in Electromagnetic Theory presents in detail the theory of spheroidal wave functions, its applications to the analysis of electromagnetic fields in various spheroidal structures, and provides comprehensive programming codes for those computations. The topics covered in this monograph include: Spheroidal coordinates and wave functions Dyadic Green's functions in spheroidal systems EM scattering by a conducting spheroid EM scattering by a coated dielectric spheroid Spheroid antennas SAR distributions in a spheroidal head model The programming codes and their applications are provided online and are written in Mathematica 3.0 or 4.0. Readers can also develop their own codes according to the theory or routine described in the book to find subsequent solutions of complicated structures. Spheroidal Wave Functions in Electromagnetic Theory is a fundamental reference for scientists, engineers, and graduate students practicing modern computational electromagnetics or applied physics.
Important new insights into how various components and systems evolved Premised on the idea that one cannot know a science without knowing its history, History of Wireless offers a lively new treatment that introduces previously unacknowledged pioneers and developments, setting a new standard for understanding the evolution of this important technology. Starting with the background-magnetism, electricity, light, and Maxwell's Electromagnetic Theory-this book offers new insights into the initial theory and experimental exploration of wireless. In addition to the well-known contributions of Maxwell, Hertz, and Marconi, it examines work done by Heaviside, Tesla, and passionate amateurs such as ...
None
A comprehensive resource to designing and constructing analog photonic links capable of high RF performance Fundamentals of Microwave Photonics provides a comprehensive description of analog optical links from basic principles to applications. The book is organized into four parts. The first begins with a historical perspective of microwave photonics, listing the advantages of fiber optic links and delineating analog vs. digital links. The second section covers basic principles associated with microwave photonics in both the RF and optical domains. The third focuses on analog modulation formats—starting with a concept, deriving the RF performance metrics from basic physical models, and the...
An authoritative guide to the theory, technologies, and state-of-the-art applications in microwave noncontact sensing and analysis Engineering researchers have recently developed exciting advances in microwave noncontact sensing and analysis, with new applications in fields ranging from medicine to structural engineering, manufacturing to transportation. This book provides an authoritative look at the current state-of-the-art in the field. Drawing upon their years of experience in both cutting-edge research and industry applications, the authors address microwave radar for both noncontact vital sign detection and mechanical movement measurement. They explore key advances in everyday applicat...