You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Advanced Thermodynamics Engineering, Second Edition is designed for readers who need to understand and apply the engineering physics of thermodynamic concepts. It employs a self-teaching format that reinforces presentation of critical concepts, mathematical relationships, and equations with concrete physical examples and explanations of applications—to help readers apply principles to their own real-world problems. Less Mathematical/Theoretical Derivations—More Focus on Practical Application Because both students and professionals must grasp theory almost immediately in this ever-changing electronic era, this book—now completely in decimal outline format—uses a phenomenological appro...
Students embarking on their studies in chemical, mechanical, aerospace, energy, and environmental engineering will face continually changing combustion problems, such as pollution control and energy efficiency, throughout their careers. Approaching these challenges requires a deep familiarity with the fundamental theory, mathematics, and physical concepts of combustion. Based on more than two decades of teaching experience, Combustion Science and Engineering lays the necessary groundwork while using an illustrative, hands-on approach. Taking a down-to-earth perspective, the book avoids heavy mathematics in the first seven chapters and in Chapter 17 (pollutants formation and destruction), but...
A revision of a popular textbook, this volume emphasizes the development of analysis techniques from basic principles for a broad range of practical problems, including simple structures, pressure vessels, beams, and shafts. The book integrates numerical and computer techniques with programs for carrying out analyses, facilitating design, and solving the problems found at the end of each chapter. It also presents the underlying theory and traditional manual solution methods along with these techniques. This new second edition covers relationships between stress and strain, torsion, statically determinate systems, instability of struts and columns, and compatibility equations.
Students embarking on their studies in chemical, mechanical, aerospace, energy, and environmental engineering will face continually changing combustion problems, such as pollution control and energy efficiency, throughout their careers. Approaching these challenges requires a deep familiarity with the fundamental theory, mathematics, and physical c
A systematic presentation of theory, procedures, illustrative examples, and applications, Mechanics of Materials provides the basis for understanding structural mechanics in engineering systems such as buildings, bridges, vehicles, and machines. The book incorporates the fundamentals of the subject into analytical methods, modeling approaches, nume
Computational Methods in Engineering: Finite Difference, Finite Volume, Finite Element, and Dual Mesh Control Domain Methods provides readers with the information necessary to choose appropriate numerical methods to solve a variety of engineering problems. Explaining common numerical methods in an accessible yet rigorous manner, the book details the finite element method (FEM), finite volume method (FVM) and importantly, a new numerical approach, dual mesh control domain method (DMCDM). Numerical methods are crucial to everyday engineering. The book begins by introducing the various methods and their applications, with example problems from a range of engineering disciplines including heat t...
Continuum Mechanics for Engineers, Third Edition provides engineering students with a complete, concise, and accessible introduction to advanced engineering mechanics. The impetus for this latest edition was the need to suitably combine the introduction of continuum mechanics, linear and nonlinear elasticity, and viscoelasticity for a graduate-leve
The discussion about energy perspectives up to 2050 and beyond has started. There seems to be consensus that ambitious climate change mitigation policies are necessary, whereas proposed solutions vary from aiming at 100% renewable energies and setting up appropriate policy frameworks to a mix of renewables with so-called clean fossil and nuclear energy. Provides an analysis of the different approaches and the reasons why there is no sustainable alternative to aiming at 100% renewables and how this vision could come true. An overview and in-depth analysis of a vital debate, describing policy options and their impact on Renewable Energy development and deployment in Europe.
Thirty-five papers from the International Symposium on [title], held in Baltimore, Maryland, March 1991, bring together the two diverse communities of mechanics of solids and materials science. Topics include thin-layer and high damping materials; metal, ceramic and polymer matrix composites; phase