You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Kleine Moleküle für Einsteiger: Dieser für Lehre und Selbststudium gleichermaßen geeignete Band behandelt den computergestützten Entwurf von Wirkstoffen, Enzyminhibitoren, Sonden und Markern für Biomoleküle und führt den Leser bis zum ersten eigenen De-Novo-Design eines funktionellen Moleküls. Gestützt auf lange Erfahrung im Molecular-Modeling-Umfeld erläutern die Autoren, welche Fragen mit den beschriebenen Methoden beantwortet werden können (und welche nicht).
Chemoinformatics strategies to improve drug discovery results With contributions from leading researchers in academia and the pharmaceutical industry as well as experts from the software industry, this book explains how chemoinformatics enhances drug discovery and pharmaceutical research efforts, describing what works and what doesn't. Strong emphasis is put on tested and proven practical applications, with plenty of case studies detailing the development and implementation of chemoinformatics methods to support successful drug discovery efforts. Many of these case studies depict groundbreaking collaborations between academia and the pharmaceutical industry. Chemoinformatics for Drug Discove...
Lipases and Phospholipases are key control elements in mammalian metabolism. They share many common features that set them apart from other metabolic enzyme classes, most importantly their association with biological membranes. Their potential as drug targets for the treatment of metabolic diseases is widely recognized, and the first lipase inhibitor drugs have been successfully introduced. Providing drug developers with a firm foundation for lipase-centered drug design, the editors of this volume have assembled experts from different scientific disciplines to create a comprehensive handbook for all pharmaceutical chemists, biochemists and physiologists working with lipases. The authors examine fundamental aspects of lipase function in vitro and in vivo, explaining how this knowledge may be used to develop lipase assays. They also treat the physiological roles of lipases in normal and disordered metabolism, as well as strategies to target lipases for the treatment of diabetes, obesity and related disorders. Additional topics include the application of phospholipases for liposome-based drug delivery and their use as diagnostic tools.
G protein-coupled receptors (GPCRs) are one of the most important target classes in pharmacology and are the target of many blockbuster drugs. Yet only with the recent elucidation of the rhodopsin structure have these receptors become amenable to a rational drug design. Based on recent examples from academia and the pharmaceutical industry, this book demonstrates how to apply the whole range of bioinformatics, chemoinformatics and molecular modeling tools to the rational design of novel drugs targeting GPCRs. Essential reading for medicinal chemists and drug designers working with this largest class of drug targets in the human genome.
Systematically examining current methods and strategies, this ready reference covers a wide range of molecular structures, from organic-chemical drugs to peptides, Proteins and nucleic acids, in line with emerging new drug classes derived from biomacromolecules. A leader in the field and one of the pioneers of this young discipline has assembled here the most prominent experts from across the world to provide first-hand knowledge. While most of their methods and examples come from the area of pharmaceutical discovery and development, the approaches are equally applicable for chemical probes and diagnostics, pesticides, and any other molecule designed to interact with a biological system. Num...
Chemogenomics brings together the most powerful concepts in modern chemistry and biology, linking combinatorial chemistry with genomics and proteomics. This first reference devoted to the topic covers all stages of the early drug discovery process, from target selection to compound library and lead design. With the combined expertise of 20 research groups from academia and leading pharmaceutical companies, this is a must-have for every drug developer and medicinal chemist applying the powerful methods of chemogenomics to speed up the drug discovery process.
This handbook provides the first-ever inside view of today's integrated approach to rational drug design. Chemoinformatics experts from large pharmaceutical companies, as well as from chemoinformatics service providers and from academia demonstrate what can be achieved today by harnessing the power of computational methods for the drug discovery process. With the user rather than the developer of chemoinformatics software in mind, this book describes the successful application of computational tools to real-life problems and presents solution strategies to commonly encountered problems. It shows how almost every step of the drug discovery pipeline can be optimized and accelerated by using chemoinformatics tools -- from the management of compound databases to targeted combinatorial synthesis, virtual screening and efficient hit-to-lead transition. An invaluable resource for drug developers and medicinal chemists in academia and industry.
Stressing strategic and technological solutions to medicinal chemistry challenges, this book presents methods and practices for optimizing the chemical aspects of drug discovery. Chapters discuss benefits, challenges, case studies, and industry perspectives for improving drug discovery programs with respect to quality and costs. • Focuses on small molecules and their critical role in medicinal chemistry, reviewing chemical and economic advantages, challenges, and trends in the field from industry perspectives • Discusses novel approaches and key topics, like screening collection enhancement, risk sharing, HTS triage, new lead finding approaches, diversity-oriented synthesis, peptidomimetics, natural products, and high throughput medicinal chemistry approaches • Explains how to reduce design-make-test cycle times by integrating medicinal chemistry, physical chemistry, and ADME profiling techniques • Includes descriptive case studies, examples, and applications to illustrate new technologies and provide step-by-step explanations to enable them in a laboratory setting