Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Recent Developments in Fractal Geometry and Dynamical Systems
  • Language: en
  • Pages: 270

Recent Developments in Fractal Geometry and Dynamical Systems

This volume contains the proceedings of the virtual AMS Special Session on Fractal Geometry and Dynamical Systems, held from May 14–15, 2022. The content covers a wide range of topics. It includes nonautonomous dynamics of complex polynomials, theory and applications of polymorphisms, topological and geometric problems related to dynamical systems, and also covers fractal dimensions, including the Hausdorff dimension of fractal interpolation functions. Furthermore, the book contains a discussion of self-similar measures as well as the theory of IFS measures associated with Bratteli diagrams. This book is suitable for graduate students interested in fractal theory, researchers interested in fractal geometry and dynamical systems, and anyone interested in the application of fractals in science and engineering. This book also offers a valuable resource for researchers working on applications of fractals in different fields.

Ergodic Theory of Numbers
  • Language: en
  • Pages: 201

Ergodic Theory of Numbers

Ergodic Theory of Numbers looks at the interaction between two fields of mathematics: number theory and ergodic theory (as part of dynamical systems). It is an introduction to the ergodic theory behind common number expansions, like decimal expansions, continued fractions, and many others. However, its aim does not stop there. For undergraduate students with sufficient background knowledge in real analysis and graduate students interested in the area, it is also an introduction to a "dynamical way of thinking". The questions studied here are dynamical as well as number theoretical in nature, and the answers are obtained with the help of ergodic theory. Attention is focused on concepts like measure-preserving, ergodicity, natural extension, induced transformations, and entropy. These concepts are then applied to familiar expansions to obtain old and new results in an elegant and straightforward manner. What it means to be ergodic and the basic ideas behind ergodic theory will be explained along the way. The subjects covered vary from classical to recent, which makes this book appealing to researchers as well as students.

From Error-Correcting Codes Through Sphere Packings to Simple Groups
  • Language: en
  • Pages: 228

From Error-Correcting Codes Through Sphere Packings to Simple Groups

This book traces a remarkable path of mathematical connections through seemingly disparate topics. Frustrations with a 1940's electro-mechanical computer at a premier research laboratory begin this story. Subsequent mathematical methods of encoding messages to ensure correctness when transmitted over noisy channels lead to discoveries of extremely efficient lattice packings of equal-radius balls, especially in 24-dimensional space. In turn, this highly symmetric lattice, with each point neighboring exactly 196,560 other points, suggested the possible presence of new simple groups as groups of symmetries. Indeed, new groups were found and are now part of the "Enormous Theorem"—the classification of all simple groups whose entire proof runs some 10,000+ pages—and these connections, along with the fascinating history and the proof of the simplicity of one of those "sporatic" simple groups, are presented at an undergraduate mathematical level.

Noncommutative Rings
  • Language: en
  • Pages: 202

Noncommutative Rings

Noncommutative Rings provides a cross-section of ideas, techniques, and results that give the reader an idea of that part of algebra which concerns itself with noncommutative rings. In the space of 200 pages, Herstein covers the Jacobson radical, semisimple rings, commutativity theorems, simple algebras, representations of finite groups, polynomial identities, Goldie's theorem, and the Golod–Shafarevitch theorem. Almost every practicing ring theorist has studied portions of this classic monograph.

Statistical Independence in Probability, Analysis, and Number Theory
  • Language: en
  • Pages: 109

Statistical Independence in Probability, Analysis, and Number Theory

Professor Kac's monograph is designed to illustrate how simple observations can be made the starting point of rich and fruitful theories and how the same theme recurs in seemingly unrelated disciplines. An elementary but thorough discussion of the game of "heads or tails," including the normal law and the laws of large numbers, is presented in a setting in which a variety of purely analytic results appear natural and inevitable. The chapter "Primes Play a Game of Chance" uses the same setting in dealing with problems of the distribution of values of arithmetic functions. The final chapter "From Kinetic Theory to Continued Fractions" deals with a spectacular application of the ergodic theorems to continued fractions. Mark Kac conveyed his infectious enthusiasm for mathematics and its applications in his lectures, papers, and books. Two of his papers won Chauvenet awards for expository excellence.

Symbolic Dynamics and its Applications
  • Language: en
  • Pages: 472

Symbolic Dynamics and its Applications

This volume contains the proceedings of the conference, Symbolic Dynamics and its Applications, held at Yale University in the summer of 1991 in honour of Roy L. Adler on his sixtieth birthday. The conference focused on symbolic dynamics and its applications to other fields, including: ergodic theory, smooth dynamical systems, information theory, automata theory, and statistical mechanics. Featuring a range of contributions from some of the leaders in the field, this volume presents an excellent overview of the subject.

Complex Analysis
  • Language: en
  • Pages: 252

Complex Analysis

Advanced textbook on central topic of pure mathematics.

Linear Inverse Problems and Tikhonov Regularization
  • Language: en
  • Pages: 338

Linear Inverse Problems and Tikhonov Regularization

Inverse problems occur frequently in science and technology, whenever we need to infer causes from effects that we can measure. Mathematically, they are difficult problems because they are unstable: small bits of noise in the measurement can completely throw off the solution. Nevertheless, there are methods for finding good approximate solutions. Linear Inverse Problems and Tikhonov Regularization examines one such method: Tikhonov regularization for linear inverse problems defined on Hilbert spaces. This is a clear example of the power of applying deep mathematical theory to solve practical problems. Beginning with a basic analysis of Tikhonov regularization, this book introduces the singular value expansion for compact operators, and uses it to explain why and how the method works. Tikhonov regularization with seminorms is also analyzed, which requires introducing densely defined unbounded operators and their basic properties. Some of the relevant background is included in appendices, making the book accessible to a wide range of readers.

The Sensual (quadratic) Form
  • Language: en
  • Pages: 167

The Sensual (quadratic) Form

John Horton Conway's unique approach to quadratic forms was the subject of the Hedrick Lectures that he gave in August of 1991 at the Joint Meetings of the Mathematical Association of America and the American Mathematical Society in Orono, Maine. This book presents the substance of those lectures. The book should not be thought of as a serious textbook on the theory of quadratic forms. It consists rather of a number of essays on particular aspects of quadratic forms that have interested the author. The lectures are self-contained and will be accessible to the generally informed reader who has no particular background in quadratic form theory. The minor exceptions should not interrupt the flow of ideas. The afterthoughts to the lectures contain discussion of related matters that occasionally presuppose greater knowledge.

Knot Theory
  • Language: en
  • Pages: 276

Knot Theory

This book uses only linear algebra and basic group theory to study the properties of knots.