You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Chapters Chapter 1: Precision Nanomedicine for Personalized Healthcare Chapter 2: NanoCrafting Solutions: Mastering Nanoscale Drug Delivery Systems Chapter 3: Sensing the Unseen: Nanosensors Revolutionizing Disease Diagnosis Chapter 4: Targeting Cancer: Nanotechnology's Precision Arsenal against Tumors Chapter 5: Unleashing the Power of Nanotechnology in Healthcare Chapter 6: Science Breakthroughs of Psychological Updated Approaches: Innovations in Nanotechnology and Nanomedicine to treat the Mental Disorders Chapter 7: Theranostics: Integrated Nanomedicine Platforms Chapter 8: The Nanoscale Frontier: Pioneering Nanomedicine for Breakthrough Healthcare Chapter 9: Regenerating Hope: Nanomaterials and Tissue Engineering for Enhanced Healing Chapter 10: Marvels in Miniature: Exploiting Nanoparticles for Cutting-edge Biomedical Applications Chapter 11: Targeting Cancer: Harnessing Nanotechnology for Precision Delivery and Enhanced Efficacy in Tumor Treatment
Chapters Chapter 1: Exploring the Nexus of Biotechnology and Psychopharmacology to treat mental disorder by concentration on substance use disorder Chapter 2: Biotechnology and Pharmacology: A Powerful Confluence of Science and Medicine Chapter 3: Bioinformatics and Computational Biology: Unraveling Biological Complexity Chapter 4: Bioprocessing and Biomanufacturing: Engineering the Future of Drug Production Chapter 5: Targeted Drug Delivery: Innovations in Nanotechnology and Drug Carriers Chapter 6: Biomarkers: The Key to Precision Diagnosis and Treatment Chapter 7: Regenerative Medicine: Harnessing the Power of Cellular and Tissue Engineering Chapter 8: Gene Editing and CRISPR Technology: Rewriting the Possibilities in Disease Treatment Chapter 9: Monoclonal Antibodies: Engineered Warriors against Disease Chapter 10: Unlocking the Genetic Code: Genomics and Personalized Medicine
Conducting polymers are versatile materials that possess both the unique properties of polymeric materials (elastic behavior, reversible deformation, flexibility, etc.) and the ability to conduct electricity with bulk conductivities comparable to those of metals and semiconductors. Conducting Polymers: Chemistries, Properties and Biomedical Applications provides current, state-of-the-art knowledge of conducting polymers and their composites for biomedical applications. This book covers the fundamentals of conducting polymers, strategies to modify the structure of conducting polymers to make them biocompatible, and their applications in various biomedical areas such as drug/gene delivery, tis...
Artificial neural networks may probably be the single most successful technology in the last two decades which has been widely used in a large variety of applications in various areas. The purpose of this book is to provide recent advances of artificial neural networks in biomedical applications. The book begins with fundamentals of artificial neural networks, which cover an introduction, design, and optimization. Advanced architectures for biomedical applications, which offer improved performance and desirable properties, follow. Parts continue with biological applications such as gene, plant biology, and stem cell, medical applications such as skin diseases, sclerosis, anesthesia, and physiotherapy, and clinical and other applications such as clinical outcome, telecare, and pre-med student failure prediction. Thus, this book will be a fundamental source of recent advances and applications of artificial neural networks in biomedical areas. The target audience includes professors and students in engineering and medical schools, researchers and engineers in biomedical industries, medical doctors, and healthcare professionals.
This contribution book collects reviews and original articles from eminent experts working in the interdisciplinary arena of novel drug delivery systems and their uses. From their direct and recent experience, the readers can achieve a wide vision on the new and ongoing potentialities of different smart drug delivery systems. Since the advent of analytical techniques and capabilities to measure particle sizes in nanometer ranges, there has been tremendous interest in the use of nanoparticles for more efficient methods of drug delivery. On the other hand, this reference discusses advances in the design, optimization, and adaptation of gene delivery systems for the treatment of cancer, cardiovascular, diabetic, genetic, and infectious diseases, and considers assessment and review procedures involved in the development of gene-based pharmaceuticals.
"This book will cover the fundamentals of conducting polymers, strategies to modify the structure of conducting polymers to make them biocompatible, and their applications in various biomedical areas like drug/gene delivery, tissue engineering, antimicrobial activities, biosensors, etc"--
With the alarming increase in cancer diagnoses and genetic illnesses, traditional drug agents and their delivery media need to be re-evaluated to address a quickly evolving field. With newer smart materials for the controlled release of macromolecules, peptides, genetic material, etc. further complications arise, such as material performance, synthesis, functionalization and targeting, biological identity, and biocompatibility.The book provides a comprehensive overview of the recent developments on 'smart' targeting and drug delivery systems with a variety of carriers like nanoparticles, membranes, and hydrogels. It contains detailed descriptions on the recent trends in this field in the ongoing battle with catastrophic diseases like cancer. This field of research has been in its infancy and continues to face growth, and with it, further challenges and difficulties along the way toward maturity, which are accurately introduced in this book.
This book covers a range of models, circuits and systems built with memristor devices and networks in applications to neural networks. It is divided into three parts: (1) Devices, (2) Models and (3) Applications. The resistive switching property is an important aspect of the memristors, and there are several designs of this discussed in this book, such as in metal oxide/organic semiconductor nonvolatile memories, nanoscale switching and degradation of resistive random access memory and graphene oxide-based memristor. The modelling of the memristors is required to ensure that the devices can be put to use and improve emerging application. In this book, various memristor models are discussed, from a mathematical framework to implementations in SPICE and verilog, that will be useful for the practitioners and researchers to get a grounding on the topic. The applications of the memristor models in various neuromorphic networks are discussed covering various neural network models, implementations in A/D converter and hierarchical temporal memories.
The RNNs (Recurrent Neural Networks) are a general case of artificial neural networks where the connections are not feed-forward ones only. In RNNs, connections between units form directed cycles, providing an implicit internal memory. Those RNNs are adapted to problems dealing with signals evolving through time. Their internal memory gives them the ability to naturally take time into account. Valuable approximation results have been obtained for dynamical systems.
This contribution book collects reviews and original articles from eminent experts working in the interdisciplinary arena of novel drug delivery systems and their uses. From their direct and recent experience, the readers can achieve a wide vision on the new and ongoing potentialities of different drug delivery systems. Since the advent of analytical techniques and capabilities to measure particle sizes in nanometer ranges, there has been tremendous interest in the use of nanoparticles for more efficient methods of drug delivery. On the other hand, this reference discusses advances in the design, optimization, and adaptation of gene delivery systems for the treatment of cancer, cardiovascular, pulmonary, genetic, and infectious diseases, and considers assessment and review procedures involved in the development of gene-based pharmaceuticals.