You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
None
This volume gives a borad overview on symmetry methods ypplied to molecular and nuclear physics, to particle physics, decay processes, and phase space dynamics. The thoroughly edited contributions should be of interest not only to scientists but also to thos that want to see how symmetry considerations are put to work in twentieth century physics.
The papers collected here discuss topics such as Lie symmetries, equivalence transformations and differential invariants, group theoretical methods in linear equations, and the development of some geometrical methods in theoretical physics. The reader will find new results in symmetries of differential and difference equations, applications in classical and quantum mechanics, two fundamental problems of theoretical mechanics, and the mathematical nature of time in Lagrangian mechanics.
The Workshop on Group Theory and Numerical Analysis brought together scientists working in several different but related areas. The unifying theme was the application of group theory and geometrical methods to the solution of differential and difference equations. The emphasis was on the combination of analytical and numerical methods and also the use of symbolic computation. This meeting was organized under the auspices of the Centre de Recherches Mathematiques, Universite de Montreal (Canada). This volume has the character of a monograph and should represent a useful reference book for scientists working in this highly topical field.
This volume is an outgrowth of the Third International Symposium on Hamiltonian Systems and Celestial Mechanics. The main topics are Arnold diffusion, central configurations, singularities in few-body problems, billiards, area-preserving maps, and geometrical mechanics. All papers in the volume went through the refereeing process typical of a mathematical research journal.
This volume focuses on developments in the field of group theory in its broadest sense and is of interest to theoretical and experimental physicists, mathematicians, and scientists in related disciplines who are interested in the latest methods and applications. In an increasingly ultra-specialized world, this volume will demonstrate the interchange of ideas and methods in theoretical and mathematical physics.
This book provides a clear and accessible introduction to the essential mathematical foundations of linear canonical transforms from a signals and systems perspective. Substantial attention is devoted to how these transforms relate to optical systems and wave propagation. There is extensive coverage of sampling theory and fast algorithms for numerically approximating the family of transforms. Chapters on topics ranging from digital holography to speckle metrology provide a window on the wide range of applications. This volume will serve as a reference for researchers in the fields of image and signal processing, wave propagation, optical information processing and holography, optical system design and modeling, and quantum optics. It will be of use to graduate students in physics and engineering, as well as for scientists in other areas seeking to learn more about this important yet relatively unfamiliar class of integral transformations.
This volume of the CRM Conference Series is based on a carefully refereed selection of contributions presented at the "11th International Symposium on Quantum Theory and Symmetries", held in Montreal, Canada from July 1-5, 2019. The main objective of the meeting was to share and make accessible new research and recent results in several branches of Theoretical and Mathematical Physics, including Algebraic Methods, Condensed Matter Physics, Cosmology and Gravitation, Integrability, Non-perturbative Quantum Field Theory, Particle Physics, Quantum Computing and Quantum Information Theory, and String/ADS-CFT. There was also a special session in honour of Decio Levi. The volume is divided into sections corresponding to the sessions held during the symposium, allowing the reader to appreciate both the homogeneity and the diversity of mathematical tools that have been applied in these subject areas. Several of the plenary speakers, who are internationally recognized experts in their fields, have contributed reviews of the main topics to complement the original contributions. .
Symplectic geometry, well known as the basic structure of Hamiltonian mechanics, is also the foundation of optics. In fact, optical systems (geometric or wave) have an even richer symmetry structure than mechanical ones (classical or quantum). The symmetries underlying the geometric model of light are based on the symplectic group. Geometric Optics on Phase Space develops both geometric optics and group theory from first principles in their Hamiltonian formulation on phase space. This treatise provides the mathematical background and also collects a host of useful methods of practical importance, particularly the fractional Fourier transform currently used for image processing. The reader will appreciate the beautiful similarities between Hamilton's mechanics and this approach to optics. The appendices link the geometry thus introduced to wave optics through Lie methods. The book addresses researchers and graduate students.