You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume presents an authoritative review of the physics of strongly and electroweakly interacting elementary particle matter in extreme conditions that prevailed in the very early Universe, and which are being recreated in high energy physics laboratories today. Exciting, high-quality experimental results from RHIC collider at Brookhaven, collected since summer 2000, suggest that strongly interacting quark-gluon plasma has indeed been produced. The study of these phenomena will form an important part of theoretical particle and nuclear physics for years to come.Based on the discussions of more than a hundred experts at the Strong and Electroweak Matter 2004 Meeting, this volume contains an up-to-date overview of present ideas on QCD matter: quark-gluon plasma in heavy ion collisions, phase structure, kinetics, thermalization and transport properties. Also discussed are topics related to the cosmology of the early Universe, dark matter, inflation and creation of particle-antiparticle asymmetries. Both analytic and numerical lattice Monte Carlo methods are emphasized.
The SEWM2002 workshop, like the ones before, brought together theoretical physicists working on thermal field theory and, more generally, on (resummation) techniques for deriving effective actions based on QCD and the electroweak standard model of elementary particle physics, but describing nonstandard situations. The focus was on the temperature/chemical potential phase diagram of QCD, considered both analytically and with lattice gauge theory, equilibrium and nonequilibrium thermo field theory, and on heavy ion physics. Other related topics were ?small x physics? in QCD, electroweak baryogenesis, inflation, and dark energy in the early universe.
The purpose of this volume is to trace the development of the theoretical understanding of quark-gluon plasma, both in terms of the equation of state and thermal correlation functions and in terms of its manifestation in high energy nuclear collisions. Who among us has not wondered how tall a mountain is on a neutron star, what happens when matter is heated and compressed to higher and higher densities, what happens when an object falls into a black hole, or what happened eons ago in the early universe? The study of quark-gluon plasma is related in one way or another to these and other thought provoking questions. Oftentimes the most eloquent exposition is given in the original papers. To th...
The thermodynamics of strongly interacting matter has become a profound and challenging area of modern physics, both in theory and in experiment. Statistical quantum chromodynamics, through analytical as well as numerical studies, provides the main theoretical tool, while in experiment, high-energy nuclear collisions are the key for extensive laboratory investigations. The field therefore straddles statistical, particle and nuclear physics, both conceptually and in the methods of investigation used. This course-tested primer addresses above all the many young scientists starting their scientific research in this field, providing them with a general, self-contained introduction that emphasize...
This book introduces the traditional and novel techniques required to study the thermodynamic and transport properties of quark–gluon plasma. In particular, it reviews the construction of improved holographic models for QCD-like confining gauge theories and their applications in the physics of quark–gluon plasma. It also discusses the recent advances in the development of hydrodynamic techniques, especially those incorporating the effects of external magnetic fields on transport. The book is primarily intended for researchers and graduate students with a background in quantum field theory and particle physics but who may not be familiar with the theory of strong interactions and holographic and hydrodynamic techniques required to study said interactions.
None
This book presents thermal field theory techniques, which can be applied in both cosmology and the theoretical description of the QCD plasma generated in heavy-ion collision experiments. It focuses on gauge interactions (whether weak or strong), which are essential in both contexts. As well as the many differences in the physics questions posed and in the microscopic forces playing a central role, the authors also explain the similarities and the techniques, such as the resummations, that are needed for developing a formally consistent perturbative expansion. The formalism is developed step by step, starting from quantum mechanics; introducing scalar, fermionic and gauge fields; describing t...
None