Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Theory of Computational Complexity
  • Language: en
  • Pages: 517

Theory of Computational Complexity

Praise for the First Edition "... complete, up-to-date coverage of computational complexity theory...the book promises to become the standard reference on computational complexity." —Zentralblatt MATH A thorough revision based on advances in the field of computational complexity and readers’ feedback, the Second Edition of Theory of Computational Complexity presents updates to the principles and applications essential to understanding modern computational complexity theory. The new edition continues to serve as a comprehensive resource on the use of software and computational approaches for solving algorithmic problems and the related difficulties that can be encountered. Maintaining ext...

Theory of Computational Complexity
  • Language: en
  • Pages: 511

Theory of Computational Complexity

A complete treatment of fundamentals and recent advances in complexity theory Complexity theory studies the inherent difficulties of solving algorithmic problems by digital computers. This comprehensive work discusses the major topics in complexity theory, including fundamental topics as well as recent breakthroughs not previously available in book form. Theory of Computational Complexity offers a thorough presentation of the fundamentals of complexity theory, including NP-completeness theory, the polynomial-time hierarchy, relativization, and the application to cryptography. It also examines the theory of nonuniform computational complexity, including the computational models of decision tr...

Complexity and Approximation
  • Language: en
  • Pages: 298

Complexity and Approximation

This Festschrift is in honor of Ker-I Ko, Professor in the Stony Brook University, USA. Ker-I Ko was one of the founding fathers of computational complexity over real numbers and analysis. He and Harvey Friedman devised a theoretical model for real number computations by extending the computation of Turing machines. He contributed significantly to advancing the theory of structural complexity, especially on polynomial-time isomorphism, instance complexity, and relativization of polynomial-time hierarchy. Ker-I also made many contributions to approximation algorithm theory of combinatorial optimization problems. This volume contains 17 contributions in the area of complexity and approximation. Those articles are authored by researchers over the world, including North America, Europe and Asia. Most of them are co-authors, colleagues, friends, and students of Ker-I Ko.

Complexity Theory of Real Functions
  • Language: en
  • Pages: 318

Complexity Theory of Real Functions

Starting with Cook's pioneering work on NP-completeness in 1970, polynomial complexity theory, the study of polynomial-time com putability, has quickly emerged as the new foundation of algorithms. On the one hand, it bridges the gap between the abstract approach of recursive function theory and the concrete approach of analysis of algorithms. It extends the notions and tools of the theory of computability to provide a solid theoretical foundation for the study of computational complexity of practical problems. In addition, the theoretical studies of the notion of polynomial-time tractability some times also yield interesting new practical algorithms. A typical exam ple is the application of ...

Problem Solving in Automata, Languages, and Complexity
  • Language: en
  • Pages: 405

Problem Solving in Automata, Languages, and Complexity

Automata and natural language theory are topics lying at the heart of computer science. Both are linked to computational complexity and together, these disciplines help define the parameters of what constitutes a computer, the structure of programs, which problems are solvable by computers, and a range of other crucial aspects of the practice of computer science. In this important volume, two respected authors/editors in the field offer accessible, practice-oriented coverage of these issues with an emphasis on refining core problem solving skills.

Advances in Algorithms, Languages, and Complexity
  • Language: en
  • Pages: 440

Advances in Algorithms, Languages, and Complexity

This book contains a collection of sixteen survey papers on recent developments in algorithms, formal languages, and computational complexity. These are the three areas in which Professor Ronald V. Book has made significant contributions, and the objective of the editors and the contributors is to honor Professor Book on his sixtieth birthday. Audience: Researchers and graduate students with interests in design and analysis of algorithms, in language theory, and in computational complexity.

Design and Analysis of Approximation Algorithms
  • Language: en
  • Pages: 450

Design and Analysis of Approximation Algorithms

This book is intended to be used as a textbook for graduate students studying theoretical computer science. It can also be used as a reference book for researchers in the area of design and analysis of approximation algorithms. Design and Analysis of Approximation Algorithms is a graduate course in theoretical computer science taught widely in the universities, both in the United States and abroad. There are, however, very few textbooks available for this course. Among those available in the market, most books follow a problem-oriented format; that is, they collected many important combinatorial optimization problems and their approximation algorithms, and organized them based on the types, ...

Complexity Theory of Real Functions
  • Language: en
  • Pages: 324

Complexity Theory of Real Functions

  • Type: Book
  • -
  • Published: 1991-10-01
  • -
  • Publisher: Unknown

None

Minimax and Applications
  • Language: en
  • Pages: 300

Minimax and Applications

Techniques and principles of minimax theory play a key role in many areas of research, including game theory, optimization, and computational complexity. In general, a minimax problem can be formulated as min max f(x, y) (1) ",EX !lEY where f(x, y) is a function defined on the product of X and Y spaces. There are two basic issues regarding minimax problems: The first issue concerns the establishment of sufficient and necessary conditions for equality minmaxf(x,y) = maxminf(x,y). (2) "'EX !lEY !lEY "'EX The classical minimax theorem of von Neumann is a result of this type. Duality theory in linear and convex quadratic programming interprets minimax theory in a different way. The second issue concerns the establishment of sufficient and necessary conditions for values of the variables x and y that achieve the global minimax function value f(x*, y*) = minmaxf(x, y). (3) "'EX !lEY There are two developments in minimax theory that we would like to mention.

Operator Theory
  • Language: en
  • Pages: 368

Operator Theory

  • Type: Book
  • -
  • Published: 2002
  • -
  • Publisher: VSP

This monograph describes mathematical methods applicable to studying nonclassical problems of mathematical physics. The emphasis of the book is on applications of the interpolar theory of Banach spaces to the theory of linear operators to be expotentially dichotomous, to some continuity properties of linear operators in Hilbert scales, to the Riesz basis property of eigenelements and associated elements of linear pencils and the correspondending elliptic problems with indefinite weight functions, and to studying nonclassical boundary value problems for first order operator-differential equations.