You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Most of the problems arising in science and engineering are nonlinear. They are inherently difficult to solve. Traditional analytical approximations are valid only for weakly nonlinear problems, and often break down for problems with strong nonlinearity. This book presents the current theoretical developments and applications of the Keller-box method to nonlinear problems. The first half of the book addresses basic concepts to understand the theoretical framework for the method. In the second half of the book, the authors give a number of examples of coupled nonlinear problems that have been solved by means of the Keller-box method. The particular area of focus is on fluid flow problems governed by nonlinear equation.
This book presents a very useful and readable collection of chapters in nanotechnologies for energy conversion, storage, and utilization, offering new results which are sure to be of interest to researchers, students, and engineers in the field of nanotechnologies and energy. Readers will find energy systems and nanotechnology very useful in many ways such as generation of energy policy, waste management, nanofluid preparation and numerical modelling, energy storage, and many other energy-related areas. It is also useful as reference book for many energy and nanofluid-related courses being taken up by graduate and undergraduate students. In particular, this book provides insights into various forms of renewable energy, such as biogas, solar energy, photovoltaic, solar cells, and solar thermal energy storage. Also, it deals with the CFD simulations of various aspects of nanofluids/hybrid nanofluids.
Nanotechnology offers great potential to revolutionize conventional food science and the food industry. The use of nanotechnology in the food industry promises improved taste, flavor, color, texture, and consistency of foodstuffs and increased absorption and bioavailability of nutraceuticals. Food Nanotechnology: Principles and Applications examines the current state of nanoscale phenomena and processes, benefits and risks of nanotechnology. This work contains 18 chapters particularly focused on the design, production, and utilization of nanoparticles, with specific applications for the food industry. Through several studies, it has been proven that nanotechnology can offer distinct advantag...
From the reviews: "The book has a broad and general coverage of both the mathematics and the numerical methods well suited for graduate students." Applied Mechanics Reviews #1 "This is a very well written book. The topics are developed with separate headings making the matter easily understandable. Computer programs are also included for many problems together with a separate chapter dealing with the application of computer programs to heat transfer problems. This enhances the utility of the book." Zentralblatt für Mathematik #1
This text introduces the subject of rheology in terms understandable to non-experts and describes the application of rheological principles to many industrial products and processes.
Hybrid Nanofluids: Preparation, Characterization and Applications presents the history of hybrid nanofluids, preparation techniques, thermoelectrical properties, rheological behaviors, optical properties, theoretical modeling and correlations, and the effect of all these factors on potential applications, such as solar energy, electronics cooling, heat exchangers, machining, and refrigeration. Future challenges and future work scope have also been included. The information from this book enables readers to discover novel techniques, resolve existing research limitations, and create novel hybrid nanofluids which can be implemented for heat transfer applications. - Describes the characterization, thermophysical and electrical properties of nanofluids - Assesses parameter selection and property measurement techniques for the calibration of thermal performance - Provides information on theoretical models and correlations for predicting hybrid nanofluids properties from experimental properties
None
Many factors affect the amount of temperature-induced movement that occurs in a building and the extent to which this movement can occur before serious damage develops or extensive maintenance is required. In some cases joints are being omitted where they are needed, creating a risk of structural failures or causing unnecessary operations and maintenance costs. In other cases, expansion joints are being used where they are not required, increasing the initial cost of construction and creating space utilization problems. As of 1974, there were no nationally acceptable procedures for precise determination of the size and the location of expansion joints in buildings. Most designers and federal...