You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Statistical physics is a core component of most undergraduate (and some post-graduate) physics degree courses. It is primarily concerned with the behavior of matter in bulk-from boiling water to the superconductivity of metals. Ultimately, it seeks to uncover the laws governing random processes, such as the snow on your TV screen. This essential new textbook guides the reader quickly and critically through a statistical view of the physical world, including a wide range of physical applications to illustrate the methodology. It moves from basic examples to more advanced topics, such as broken symmetry and the Bose-Einstein equation. To accompany the text, the author, a renowned expert in the field, has written a Solutions Manual/Instructor's Guide, available free of charge to lecturers who adopt this book for their courses. Introduction to Statistical Physics will appeal to students and researchers in physics, applied mathematics and statistics.
Written by a world-renowned theoretical physicist, Introduction to Statistical Physics, Second Edition clarifies the properties of matter collectively in terms of the physical laws governing atomic motion. This second edition expands upon the original to include many additional exercises and more pedagogically oriented discussions that fully explai
A book about statistical mechanics for students.
This is perhaps the most up-to-date book on Modern Elementary Particle Physics. The main content is an introduction to Yang-Mills fields, and the Standard Model of Particle Physics. A concise introduction to quarks is provided, with a discussion of the representations of SU(3).The Standard Model is presented in detail, including such topics as the Kobayashi-Maskawa matrix, chiral symmetry breaking, and the ?-vacuum. Theoretical topics of a more general nature include path integrals, topological solitons, renormalization group, effective potentials, the axial anomaly, and lattice gauge theory.This second edition, which has been expanded, incorporates the following new subjects: Wilson's renormalization scheme, and its relation to perturbative renormalization; pitfalls in quantizing gauge fields, such as the Gribov ambiguity; the lattice as a consistent regularization; Monte Carlo methods of solution; and the issues, folklores, and scenarios of quark confinement. More than a quarter of the book comprise of new materials.This book may be used as a text for a one-semester course on advanced quantum field theory, or reference book for particle physicists.
Die neue Auflage des für seinen allgemeinen, praxisnahen Ansatz gelobten Lehrbuchs ist gründlich überarbeitet und erweitert. In sich abgeschlossene und deshalb gut einzeln lesbare Kapitel entwickeln zunächst die traditionellen Konzepte wie Feynman-Graphen und behandeln dann zentrale Themen wie Funktionalintegrale, statistische Mechanik sowie die Wilson-Renormierung. Aufgrund des raschen Fortschritts und der wachsenden Bedeutung von Systemen mit niedrigen Dimensionen befasst sich diese zweite Auflage insbesondere auch mit eindimensionalen Leitern und ähnlichen Systemen. Neue Übungsaufgaben (mit Lösungen) sind hinzugekommen.
This book introduces an approach to protein folding from the point of view of kinetic theory. There is an abundance of data on protein folding, but few proposals are available on the mechanism driving the process. Here, presented for the first time, are suggestions on possible research directions, as developed by the author in collaboration with C C Lin.The first half of this invaluable book contains a concise but relatively complete review of relevant topics in statistical mechanics and kinetic theory. It includes standard topics such as thermodynamics, the Maxwell-Boltzmann distribution, and ensemble theory. Special discussions include the dynamics of phase transitions, and Brownian motion as an illustration of stochastic processes.The second half develops topics in molecular biology and protein structure, with a view to discovering mechanisms underlying protein folding. Attention is focused on the energy flow through the protein in its folded state. A mathematical model, based on the Brownian motion of coupled harmonic oscillators, is worked out in the appendix.
A unique approach to quantum field theory, with emphasis on the principles of renormalization Quantum field theory is frequently approached from the perspective of particle physics. This book adopts a more general point of view and includes applications of condensed matter physics. Written by a highly respected writer and researcher, it first develops traditional concepts, including Feynman graphs, before moving on to key topics such as functional integrals, statistical mechanics, and Wilson's renormalization group. The connection between the latter and conventional perturbative renormalization is explained. Quantum Field Theory is an exceptional textbook for graduate students familiar with ...
This book contains a dramatic and revealing translation of this ancient classic into English. The Chinese original is set side-by-side with the translation. Two things set this work apart from other translated versions. First, archeological findings are used to uncover the meaning of passages obscured for thousands of years. Second, it preserves the flavor of the original in a poetic rendition. An introductory part of this book provides the historical and philosophical background to the I Ching . The story is told of the ancient Chinese civilization, pointing out events and figures mentioned in the I Ching . The undisguised face of the I Ching will appeal to the modern reader, who will read ...
Gauge fields are the messengers carrying signals between elementary particles, enabling them to interact with each other. Originating at the level of quarks, these basic interactions percolate upwards, through nuclear and atomic physics, through chemical and solid state physics, to make our everyday world go round. This book tells the story of gauge fields, from Maxwell's 1860 theory of electromagnetism to the 1954 theory of Yang and Mills that underlies the Standard Model of elementary particle theory. In the course of the narration, the author introduces people and events in experimental and theoretical physics that contribute to ideas that have shaped our conception of the physical world.
This interesting book provides the physical and mathematical background for a theory describing the universe as a quantum superfluid, and how dark energy and dark matter arise. Presenting a novel theory spanning many different fields in physics, the key concepts in each field are introduced.The reader is only expected to know the rudiments of condensed matter physics, quantum field theory and general relativity to explore this fascinating new model of dark matter and dark energy as facets of a cosmic superfluid.