You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Julian Schwinger was already the world’s leading nuclear theorist when he joined the Radiation Laboratory at MIT in 1943, at the ripe age of 25. Just 2 years earlier he had joined the faculty at Purdue, after a postdoc with OppenheimerinBerkeley,andgraduatestudyatColumbia. Anearlysemester at Wisconsin had con?rmed his penchant to work at night, so as not to have to interact with Breit and Wigner there. He was to perfect his iconoclastic 1 habits in his more than 2 years at the Rad Lab. Despite its deliberately misleading name, the Rad Lab was not involved in nuclear physics, which was imagined then by the educated public as a esoteric science without possible military application. Rather, ...
In its simplest manifestation, the Casimir effect is a quantum force of attraction between two parallel uncharged conducting plates. More generally, it refers to the interaction OCo which may be either attractive or repulsive OCo between material bodies due to quantum fluctuations in whatever fields are relevant. It is a local version of the van der Waals force between molecules. Its sweep ranges from perhaps its being the origin of the cosmological constant to its being responsible for the confinement of quarks. This monograph develops the theory of such forces, based primarily on physically transparent Green''s function techniques, and makes applications from quarks to the cosmos, as well ...
Classical Electrodynamics captures Schwinger's inimitable lecturing style, in which everything flows inexorably from what has gone before. Novel elements of the approach include the immediate inference of Maxwell's equations from Coulomb's law and (Galilean) relativity, the use of action and stationary principles, the central role of Green's functions both in statics and dynamics, and, throughout, the integration of mathematics and physics. Thus, physical problems in electrostatics are used to develop the properties of Bessel functions and spherical harmonics. The latter portion of the book is devoted to radiation, with rather complete treatments of synchrotron radiation and diffraction, and...
None
Vols. for , 1881, 1887,1926, 1928, 1931, 1934, 1936-38 issued also without Detailed statement.
Julian Schwinger was one of the leading theoretical physicists of the twentieth century. His contributions are as important, and as pervasive, as those of Richard Feynman, with whom (and with Sin-itiro Tomonaga) he shared the 1965 Nobel Prize for Physics. Yet, while Feynman is universallyrecognized as a cultural icon, Schwinger is little known even to many within the physics community. In his youth, Julian Schwinger was a nuclear physicist, turning to classical electrodynamics after World War II. In the years after the war, he was the first to renormalize quantum electrodynamics.Subsequently, he presented the most complete formulation of quantum field theory and laid the foundations for the ...
None