You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The expected end of the “oil age” will lead to increasing focus and reliance on alternative energy conversion devices, among which fuel cells have the potential to play an important role. Not only can phosphoric acid and solid oxide fuel cells already efficiently convert today’s fossil fuels, including methane, into electricity, but other types of fuel cells, such as polymer electrolyte membrane fuel cells, have the potential to become the cornerstones of a possible future hydrogen economy. Featuring 21 peer-reviewed entries from the Encyclopedia of Sustainability Science and Technology, Fuel Cells offers concise yet comprehensive coverage of the current state of research and identifies key areas for future investigation. Internationally renowned specialists provide authoritative introductions to a wide variety of fuel cell types, and discuss materials, components, and systems for these technologies. The entries also cover sustainability and marketing considerations, including comparisons of fuel cells with alternative technologies.
Chemical modelling covers a wide range of disciplines and this book is the first stop for any materials scientist, biochemist, chemist or molecular physicist wishing to acquaint themselves with major developments in the applications and theory of chemical modelling. Containing both comprehensive and critical reviews, it is a convenient reference to the current literature. Coverage includes, but is not limited to, isomerism in polyoxometalate chemistry, modelling molecular magnets, molecular modelling of cyclodextrin inclusion complexes and graphene nanoribbons heterojunctions.
Discover the physical chemistry of charge carriers in the second edition of this popular textbook Ionic and electronic charge carriers are critical to the kinetic and electrochemical properties of ionic solids. These charge carriers are point defects and are decisive for electrical conductivity, mass transport, and storage phenomena. Generally, defects are deviations from the perfect structure, and if higher-dimensional, also crucial for the mechanical properties. The study of materials science and energy research therefore requires a thorough understanding of defects, in particular the charged point defects, their mobilities, and formation mechanisms. Physical Chemistry of Ionic Materials i...
Forensic science combines analytical science with the requirements of law enforcement agencies and legislation. This can often pose challenges within the development of novel analytical methods, particularly with the drive to have more in-field and in-situ applications to facilitate the investigation of criminal cases. This book will explore the specific challenges encountered by forensic scientists and the developments that are being made to address these within the framework of the legislative requirements. It will provide a critical appraisal of the current challenges facing analytical approaches for the detection of forensic evidence and the state of the art technologies used to address these challenges. Providing an excellent combination of current research and how this pertains to forensic investigations, the book will also highlight key obstacles within this ever-changing environment. Aimed at graduates and forensic professionals, this is a unique oversight of the current work being undertaken within the development of analytical methods and also in the interpretation of complex crime scene samples.
The book summarizes the current state of the know-how in the field of perovskite materials: synthesis, characterization, properties, and applications. Most chapters include a review on the actual knowledge and cutting-edge research results. Thus, this book is an essential source of reference for scientists with research fields in energy, physics, chemistry and materials. It is also a suitable reading material for graduate students.
None
This book gives a comprehensive review of proton conductors, including theory, techniques, the materials themselves and applications.
This book describes the history and future views of high conductivity solid ionic conductors, ionic transport theories in solids, relations between structures and ionic transport in solid ionic and ionic electronic mixed conductors.