You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book provides an introduction to the principles of both cardiovascular epidemiology and molecular pathophysiology; as a unique aspect, it also outlines and discusses the molecular concepts underlying epidemiological observations. This first volume is focused on the genetic and molecular basis of pathogenesis and the role of environmental factors triggering cardiovascular dysfunctions. The book promotes the use of interdisciplinary approaches in the field of preventive medicine based on recent advances in molecular and cellular pathophysiology. The book offers a valuable resource for researchers in basic biomedical fields and clinical scientists alike, as well as guidelines for novel avenues of research in both basic pathophysiology and cardiovascular therapy and prevention.
Calcium ions represent Mother Nature’s ‘ion-of-choice’ for regulating fundamental physiological functions, as they initiate a new life at the time of fertilization and guide subsequent developmental and physiological functions of the human body. Calcium channels, which act as gated pathways for the movement of calcium ions across the membranes, play a central part in the initiation of calcium signals, and defects in calcium channel function have been found to result in a plethora of human diseases, referred to as the calcium channelopathies. Pathologies of Calcium Channels brings together leading international experts to discuss our current understanding of human diseases associated with the various calcium channels, from their molecular basis to potential future therapeutic targeting of calcium channels.
In this fast moving field the main goal of this volume is to provide up-to-date information on the molecular and functional properties and pharmacology of mammalian TRP channels. Leading experts in the field will describe properties of a single TRP protein/channel or portray more general principles of TRP function and important pathological situations linked to mutations of TRP genes or their altered expression. Thereby this volume on Transient Receptor Potential (TRP) Channels provides valuable information for readers with different expectations and backgrounds, for those who are approaching this field of research as well as for those wanting to make a trip to TRPs.
Store-operated Ca2+ entry (SOCE) serves to control essential functions throughout the human body and represents a novel and attractive target for therapeutic intervention. This book provides an extensive overview of the role of SOCE pathways in Molecular Physiology and Cell Biology, as well as their clinical significance. (Patho)physiological principles and emerging therapeutic strategies are delineated in a way that is valuable both for the education of graduate students in advanced Cell Biology/Molecular Physiology and for the promotion of innovative research and developments in the clinical/therapeutic fields. A comprehensive, clear and elaborate representation of current concepts is provided, including a pathophysiological section arranged in a tissue/organ/system-oriented manner. The book is intended for basic researchers specializing in cell signaling, ion transport, or pharmacology, as well as biomedical scientists and clinicians with a focus on immunology, neurology or cardiology.
Scientists struggling with the pharmaco- and toxicodynamic interactions of drugs and chemicals will find this book a valuable reference to the relevant theoretical background of this complex field and an indispensible guide to practical, analytical procedures for evaluation of experimental data. A new, straightforward mechanistically based analysis of observed combination effects is backed up by numerous examples as well as by computer-assisted plotting and curve fitting – using popular graphical software systems. The reader thus can gain not only a modern understanding of this complex area but proceed directly to the evaluation of his own dose-response experiments with respect to independent actions, and additive interactions, where appropriate. The meanings of terms and acronyms in the literature, most of them used in this book also, are elucidated by a comprehensive glossary. This book represents a modern, theoretical and practical guide for all scientists dealing with this controversial and complex area of the action and interaction of drugs and chemicals.
The field of transient receptor potential (TRP) channels has gained momentum in recent years not only because of the 2021 Nobel Prize in Physiology or Medicine awarded to David Julius and Ardem Patapoutian for their discoveries of receptors for temperature and touch, but also because of the growing appreciation of the diverse and important physiological and pathophysiological functions of this diverse family of cation channels. In the past decade, there have been important discoveries in the TRP field: resolution of the 3-D structures of major subfamilies using single-particle cryogenic electron microscopy and X-ray crystallography, identification and development of selective agonists and an...
The rapid expansion of the TRP field has generated a large amount of excellent original work across many different research fields. However, investigators are not necessarily familiar with the pros and cons of the variety of methods used to study TRP channels. Because of functional and genetic diversity, as well as the different physiological roles
Since the first TRP ion channel was discovered in Drosophila melanogaster in 1989, the progress made in this area of signaling research has yielded findings that offer the potential to dramatically impact human health and wellness. Involved in gateway activity for all five of our senses, TRP channels have been shown to respond to a wide range of st
Almost 25 years ago, the first mammalian transient receptor potential (TRP) channel was cloned and published. TRP channels now represent an extended family of 28 members fulfilling multiple roles in the living organism. Identified functions include control of body temperature, transmitter release, mineral homeostasis, chemical sensing, and survival mechanisms in a challenging environment. The TRP channel superfamily covers six families: TRPC with C for “canonical”, TRPA with A for “ankyrin”, TRPM with M for “melastatin”, TRPML with ML for “mucolipidin”, TRPP with P for “polycystin”, and TRPV with V for “vanilloid”. Over the last few years, new findings on TRP channels have confirmed their exceptional function as cellular sensors and effectors. This Special Book features a collection of 8 reviews and 7 original articles published in “Cells” summarizing the current state-of-the-art on TRP channel research, with a main focus on TRP channel activation, their physiological and pathophysiological function, and their roles as pharmacological targets for future therapeutic options.