You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The study of operator algebras, which grew out of von Neumann's work in the 1920s and the 1930s on modelling quantum mechanics, has in recent years experienced tremendous growth and vitality. This growth has resulted in significant applications in other areas - both within and outside mathematics. The field was a natural candidate for a 1994-1995 program year in Operator Algebras and Applications held at The Fields Institute for Research in the Mathematical Sciences. This volume contains a selection of papers that arose from the seminars and workshops of the program. Topics covered include the classification of amenable C*-algebras, the Baum-Connes conjecture, E[subscript 0] semigroups, subfactors, E-theory, quasicrystals, and the solution to a long-standing problem in operator theory: Can almost commuting self-adjoint matrices be approximated by commuting self-adjoint matrices?
The KK-theory of Kasparov is now approximately twelve years old; its power, utility and importance have been amply demonstrated. Nonethe less, it remains a forbiddingly difficult topic with which to work and learn. There are many reasons for this. For one thing, KK-theory spans several traditionally disparate mathematical regimes. For another, the literature is scattered and difficult to penetrate. Many of the major papers require the reader to supply the details of the arguments based on only a rough outline of proofs. Finally, the subject itself has come to consist of a number of difficult segments, each of which demands prolonged and intensive study. is to deal with some of these difficul Our goal in writing this book ties and make it possible for the reader to "get started" with the theory. We have not attempted to produce a comprehensive treatise on all aspects of KK-theory; the subject seems too vital to submit to such a treatment at this point. What seemed more important to us was a timely presen tation of the very basic elements of the theory, the functoriality of the KK-groups, and the Kasparov product.
First multi-year cumulation covers six years: 1965-70.
The author unifies various constructions of $C^*$-algebras from dynamical systems, specifically, the dimension group construction of Krieger for shift spaces, the corresponding constructions of Wagoner and Boyle, Fiebig and Fiebig for countable state Markov shifts and one-sided shift spaces, respectively, and the constructions of Ruelle and Putnam for Smale spaces. The general setup is used to analyze the structure of the $C^*$-algebras arising from the homoclinic and heteroclinic equivalence relations in expansive dynamical systems, in particular, expansive group endomorphisms and automorphisms and generalized 1-solenoids. For these dynamical systems it is shown that the $C^*$-algebras are inductive limits of homogeneous or sub-homogeneous algebras with one-dimensional spectra.
In the past decade, there has been a sudden and vigorous development in a number of research areas in mathematics and mathematical physics, such as theory of operator algebras, knot theory, theory of manifolds, infinite dimensional Lie algebras and quantum groups (as a new topics), etc. on the side of mathematics, quantum field theory and statistical mechanics on the side of mathematical physics. The new development is characterized by very strong relations and interactions between different research areas which were hitherto considered as remotely related. Focussing on these new developments in mathematical physics and theory of operator algebras, the International Oji Seminar on Quantum An...
This book contains a collection of survey papers by leading researchers in ergodic theory, low-dimensional and topological dynamics and it comprises nine chapters on a range of important topics. These include: the role and usefulness of ultrafilters in ergodic theory, topological dynamics and Ramsey theory; topological aspects of kneading theory together with an analogous 2-dimensional theory called pruning; the dynamics of Markov odometers, Bratteli-Vershik diagrams and orbit equivalence of non-singular automorphisms; geometric proofs of Mather's connecting and accelerating theorems; recent results in one dimensional smooth dynamics; periodic points of nonexpansive maps; arithmetic dynamics; the defect of factor maps; entropy theory for actions of countable amenable groups.
This paper shows that properties of projective modules over a group ring $\mathbf{Z}_p[\Delta]$, where $\Delta$ is a finite Galois group, can be used to study the behavior of certain invariants which occur naturally in Iwasawa theory for an elliptic curve $E$. Modular representation theory for the group $\Delta$ plays a crucial role in this study. It is necessary to make a certain assumption about the vanishing of a $\mu$-invariant. The author then studies $\lambda$-invariants $\lambda_E(\sigma)$, where $\sigma$ varies over the absolutely irreducible representations of $\Delta$. He shows that there are non-trivial relationships between these invariants under certain hypotheses.
Based on presentations given at the NordForsk Network Closing Conference “Operator Algebra and Dynamics,” held in Gjáargarður, Faroe Islands, in May 2012, this book features high quality research contributions and review articles by researchers associated with the NordForsk network and leading experts that explore the fundamental role of operator algebras and dynamical systems in mathematics with possible applications to physics, engineering and computer science. It covers the following topics: von Neumann algebras arising from discrete measured groupoids, purely infinite Cuntz-Krieger algebras, filtered K-theory over finite topological spaces, C*-algebras associated to shift spaces (o...
The authors study the Lyapunov exponents and their associated invariant subspaces for infinite dimensional random dynamical systems in a Banach space, which are generated by, for example, stochastic or random partial differential equations. The authors prove a multiplicative ergodic theorem and then use this theorem to establish the stable and unstable manifold theorem for nonuniformly hyperbolic random invariant sets.
A new class of (not necessarily bounded) operators related to (mainly infinite) directed trees is introduced and investigated. Operators in question are to be considered as a generalization of classical weighted shifts, on the one hand, and of weighted adjacency operators, on the other; they are called weighted shifts on directed trees. The basic properties of such operators, including closedness, adjoints, polar decomposition and moduli are studied. Circularity and the Fredholmness of weighted shifts on directed trees are discussed. The relationships between domains of a weighted shift on a directed tree and its adjoint are described. Hyponormality, cohyponormality, subnormality and complete hyperexpansivity of such operators are entirely characterized in terms of their weights. Related questions that arose during the study of the topic are solved as well.