You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Hvordan fler- og tværmedialitet forefindes, begribes og udøves i medieorganisationer nationalt og internationalt.
Mål- og integralteori har op igennem det 20. århundrede udviklet sig til at udgøre en væsentlig del af grundlaget for matematiske discipliner som f.eks. sandsynlighedsteori, statistik, matematisk fysik, funktionel-analyse og matematisk finansiering. Denne bog giver en stringent indføring i de grundlæggende elementer af mål- og integralteorien, og den kan således danne et solidt udgangspunkt for videregående studier inden for de netop nævnte matematiske discipliner. Grundlæggende mål- og integralteori henvender sig som udgangspunkt til læsere med en matematisk baggrund svarende til et typisk første studieår på matematik-studiet ved et dansk universitet. Basale resultater og teknikker i forbindelse med grænseovergang og kontinuitet forventes således at være bekendte af læseren, men derudover opbygges teorien gennemgående fra bunden uden yderligere forudsætninger.
None
None
a great resource anywhere you go; it is an easy tool that has just the words you want and need! The entire dictionary is an alphabetical list of medical words with definitions. This eBook is an easy-to-understand guide to medical terms for anyone anyways at any time. The content of this eBook is only to be used for informational purposes. en stor ressource hvor som helst du går det er et nemt værktøj, der bare har de ord, du vil have og har brug for! Hele ordbogen er en alfabetisk liste over medicinske ord med definitioner. Denne eBook er en letforståelig guide til medicinske vilkår for nogen, uanset hvor som helst. Indholdet af denne eBook skal kun bruges til orienteringsformål.
None
An asymptotisch darstellt{laquo}, wenn . a;n 1 1m--= 1, n=oow(n) oder anders ausgedrückt, wenn a:n = w(n) (1 + Bn), wobei Wir werden dies mit bezeichnen. Zur Bestimmung eines solchen asymptotischen Ausdrucks w(n) hat DAR Boux1 eine sehr allgemeine Methode gegeben. Er bildet die Potenzreihe (1) der komplexen Veränderlichen z und zeigt, daß der asymptotische Wert von a:n von denjenigen Singularitätastellen der analytischen Funktion f(z) abhängt, die auf der Peripherie des Konvergenzkreises der Potenzreihe (1) liegen. Ich werde jetzt mit einigen Worten die DARBOUXschen Resultate dar legen. Damit die DARBouxsche Methode anwendbar sei, muß notwendigerweise vorausgesetzt werden, daß der Radius des Konvergenzkreises der Potenz reihe (l) eine von Null und von + oo verschiedene positive Zahl R ist. Nehmen wir ferner an, daß die Anzahl der Singularitätastellen (JylJ = \Y2\ = · · · = JykJ = R) der Funktionf(z) (eigentlich der durch die Reihe (1) gewinnbaren unmittel baren analytischen Fortsetzung derselben) auf dem Konvergenzkreis mit dem Radius R endlich ist. Da nun DARBOUX beweist, daß die Singularitäta stellen Yv y, --, Yk solche”Teile.