You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
"Princeton University Press published Imai's textbook, Quantitative Social Science: An Introduction, an introduction to quantitative methods and data science for upper level undergrads and graduates in professional programs, in February 2017. What is distinct about the book is how it leads students through a series of applied examples of statistical methods, drawing on real examples from social science research. The original book was prepared with the statistical software R, which is freely available online and has gained in popularity in recent years. But many existing courses in statistics and data sciences, particularly in some subject areas like sociology and law, use STATA, another general purpose package that has been the market leader since the 1980s. We've had several requests for STATA versions of the text as many programs use it by default. This is a "translation" of the original text, keeping all the current pedagogical text but inserting the necessary code and outputs from STATA in their place"--
"Data analysis has become a necessary skill across the social sciences, and recent advancements in computing power have made knowledge of programming an essential component. Yet most data science books are intimidating and overwhelming to a non-specialist audience, including most undergraduates. This book will be a shorter, more focused and accessible version of Kosuke Imai's Quantitative Social Science book, which was published by Princeton in 2018 and has been adopted widely in graduate level courses of the same title. This book uses the same innovative approach as Quantitative Social Science , using real data and 'R' to answer a wide range of social science questions. It assumes no prior ...
The Stata edition of the groundbreaking textbook on data analysis and statistics for the social sciences and allied fields Quantitative analysis is an increasingly essential skill for social science research, yet students in the social sciences and related areas typically receive little training in it—or if they do, they usually end up in statistics classes that offer few insights into their field. This textbook is a practical introduction to data analysis and statistics written especially for undergraduates and beginning graduate students in the social sciences and allied fields, such as business, economics, education, political science, psychology, sociology, public policy, and data scie...
"This is an intro-level text that teaches how to think clearly and conceptually about quantitative information, emphasizing ideas over technicality and assuming no prior exposure to data analysis, statistics, or quantitative methods. The books four parts present the foundation for quantiative reasoning: correlation and causation; statistical relationships; causal phenomena; and incorporating quantitative information into decision making. Within these parts it covers the array of tools used by social scientists, including regression, inference, experiments, research design, and more, all by explaining the rationale and logic behind such tools rather than focusing only on the technical calculations used for each. New concepts are presented simply, with the help of copious examples, and the books leans towards graphic rather than mathematical representation of data, with any technical material included in appendices"--
Drawing upon the recent explosion of research in the field, a diverse group of scholars surveys the latest strategies for solving ecological inference problems, the process of trying to infer individual behavior from aggregate data. The uncertainties and information lost in aggregation make ecological inference one of the most difficult areas of statistical inference, but these inferences are required in many academic fields, as well as by legislatures and the Courts in redistricting, marketing research by business, and policy analysis by governments. This wide-ranging collection of essays offers many fresh and important contributions to the study of ecological inference.
A tidyverse edition of the acclaimed textbook on data analysis and statistics for the social sciences and allied fields Quantitative analysis is an essential skill for social science research, yet students in the social sciences and related areas typically receive little training in it. Quantitative Social Science is a practical introduction to data analysis and statistics written especially for undergraduates and beginning graduate students in the social sciences and allied fields, including business, economics, education, political science, psychology, sociology, public policy, and data science. Proven in classrooms around the world, this one-of-a-kind textbook engages directly with empiri...
How do armies fight and what makes them victorious on the modern battlefield? In Divided Armies, Jason Lyall challenges long-standing answers to this classic question by linking the fate of armies to their levels of inequality. Introducing the concept of military inequality, Lyall demonstrates how a state's prewar choices about the citizenship status of ethnic groups within its population determine subsequent battlefield performance. Treating certain ethnic groups as second-class citizens, either by subjecting them to state-sanctioned discrimination or, worse, violence, undermines interethnic trust, fuels grievances, and leads victimized soldiers to subvert military authorities once war begi...
Novel collection of essays addressing contemporary trends in political science, covering a broad array of methodological and substantive topics.
A guide for using computational text analysis to learn about the social world From social media posts and text messages to digital government documents and archives, researchers are bombarded with a deluge of text reflecting the social world. This textual data gives unprecedented insights into fundamental questions in the social sciences, humanities, and industry. Meanwhile new machine learning tools are rapidly transforming the way science and business are conducted. Text as Data shows how to combine new sources of data, machine learning tools, and social science research design to develop and evaluate new insights. Text as Data is organized around the core tasks in research projects using ...
"One of the few books that provide an accessible introduction to quantitative data analysis with R. A particular strength of the text is the focus on ′real world′ examples which help students to understand why they are learning these methods." - Dr Roxanne Connelly, University of York Relevant, engaging, and packed with student-focused learning features, this book provides the step-by-step introduction to quantitative research and data every student needs. Gradually introducing applied statistics and R, it uses examples from across the social sciences to show you how to apply abstract statistical and methodological principles to your own work. At a student-friendly pace, it enables you to: - Understand and use quantitative data to answer questions - Approach surrounding ethical issues - Collect quantitative data - Manage, write about, and share the data effectively Supported by incredible digital resources with online tutorials, videos, datasets, and multiple choice questions, this book gives you not only the tools you need to understand statistics, quantitative data, and R software, but also the chance to practice and apply what you have learned.