You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book consists of selected papers presented at the International Conference on Geotechnical Challenges in Mining, Tunneling and Underground Infrastructures (ICGMTU), held as a virtual conference on December 20, 2021. The papers represent the research work in the related fields of underground mining, ground control, mining geotechnics, geo-instrumentation, mine tunnelling, and underground structures. It focuses on the latest technology being implemented including artificial intelligence and machine learning applications to solve challenges in mining tunneling and geotechnical structure engineering. It also highlights the state-of-the-art technologies adopted by the civil and mining industry for their commercial as well as environmental benefits. The papers are presented by an international pool of academics, research scientist, and industrial experts and therefore cater to the global audience from the field of underground engineering.
This book intends to decipher the knowledge in the advancement of understanding, detecting, predicting, and monitoring landslides. The number of massive landslides and the damages they cause has increased across the globe in recent times. It is one of the most devastating natural hazards that cause widespread damage to habitat on a local, regional, and global scale. International experts provide their experience in landslide research and practice to help stakeholders mitigate and predict potential landslides. The book comprises chapters on: Dynamics, mechanisms, and processes of landslides; Geological, geotechnical, hydrological, and geophysical modelling for landslides; Mapping and assessment of hazard, vulnerability, and risk associated with landslides; Monitoring and early warning of landslides; Application of remote sensing and GIS techniques in monitoring and assessment of landslides. The book will be of interest to researchers, practitioners, and decision-makers in adapting suitable modern techniques for landslide study.
This title contains chapters written by noted researchers and experts. It brings together the concepts, theories and experiences of experts in the field of geoinformatics in relation to natural resource management.
After the devastating disaster caused by the tsunami on 26 December 2004, disaster mitigation and rehabilitation have become some of the most pressing topics for discussion in geotechnical engineering and related professions. Some of the most important contributions to this discussion were made during the International Conference on Geotechnical Engineering for Disaster Mitigation and Rehabilitation, the first of its kind held in the Asia-Pacific region. It was organized by the Joint Working Group on Geotechnical Engineering for Disaster Mitigation and Rehabilitation (JWG-DMR), which is supported by national geotechnical societies from Australia, China, India, Indonesia, Japan, South Korea, ...
"Akashvani" (English) is a programme journal of ALL INDIA RADIO, it was formerly known as The Indian Listener. It used to serve the listener as a bradshaw of broadcasting ,and give listener the useful information in an interesting manner about programmes, who writes them, take part in them and produce them along with photographs of performing artists. It also contains the information of major changes in the policy and service of the organisation. The Indian Listener (fortnightly programme journal of AIR in English) published by The Indian State Broadcasting Service, Bombay, started on 22 December, 1935 and was the successor to the Indian Radio Times in English, which was published beginning ...
Rock Slope Engineering covers the investigation, design, excavation and remediation of man-made rock cuts and natural slopes, primarily for civil engineering applications. It presents design information on structural geology, shear strength of rock and ground water, including weathered rock. Slope design methods are discussed for planar, wedge, circular and toppling failures, including seismic design and numerical analysis. Information is also provided on blasting, slope stabilization, movement monitoring and civil engineering applications. This fifth edition has been extensively up-dated, with new chapters on weathered rock, including shear strength in relation to weathering grades, and seismic design of rock slopes for pseudo-static stability and Newmark displacement. It now includes the use of remote sensing techniques such as LiDAR to monitor slope movement and collect structural geology data. The chapter on numerical analysis has been revised with emphasis on civil applications. The book is written for practitioners working in the fields of transportation, energy and industrial development, and undergraduate and graduate level courses in geological engineering.
More often than not, it is difficult or even impossible to obtain directly the specific rock parameters of interest using in situ methods. The procedures for measuring most rock properties are also time consuming and expensive. Engineering Properties of Rocks, Second Edition, explores the use of typical values and/or empirical correlations of similar rocks to determine the specific parameters needed. The book is based on the author's extensive experience and offers a single source of information for the evaluation of rock properties. It systematically describes the classification and characterization of intact rock, rock discontinuities, and rock masses, and presents the various indirect methods for estimating the deformability, strength, and permeability of these components as well as the in situ rock stresses. - Presents a single source for the correlations on rock properties - Saves time and resources invested on in situ testing procedures - Fully updated with current literature - Expanded coverage of rock types and geographical locations
This book focuses on the use of open source software for geospatial analysis. It demonstrates the effectiveness of the command line interface for handling both vector, raster and 3D geospatial data. Appropriate open-source tools for data processing are clearly explained and discusses how they can be used to solve everyday tasks. A series of fully worked case studies are presented including vector spatial analysis, remote sensing data analysis, landcover classification and LiDAR processing. A hands-on introduction to the application programming interface (API) of GDAL/OGR in Python/C++ is provided for readers who want to extend existing tools and/or develop their own software.