You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Focusing on the relationship between structure and properties, this is a well-balanced treatment of the mechanics and the materials science of composites, while not neglecting the importance of processing. This updated second edition contains new chapters on fatigue and creep of composites, and describes in detail how the various reinforcements, the materials in which they are embedded, and of the interfaces between them, control the properties of the composite materials at both the micro- and macro-levels. Extensive use is made of micrographs and line drawings, and examples of practical applications in various fields are given throughout the book, together with extensive references to the literature. Intended for use in graduate and upper-division undergraduate courses, this book will also prove a useful reference for practising engineers and researchers in industry and academia.
In the last few years, a significant increase in applications of MMCs has taken place, particularly in the areas of automotive, aerospace, electronics, and recreation. These include continuous fiber reinforced MMCs for cables in power transmission, high temperature superconducting wires, particulate MMCs in civilian aircraft and automotive applications, and high volume fraction, high thermal conductivity substrates for electronic packaging. Nevertheless, as with any novel material systems, there is a lack of fundamental understanding on the part of practicing engineers and designers. This book would seek to address these issues, in a thorough and cohesive manner, as well as to provide students and scientists with a basic understanding of MMCs. This book will emphasize the synergistic relationships among processing, structure, and properties of metal matrix composites.
The fourth edition of Krishan Chawla's widely used textbook, Composite Materials, offers integrated and completely up-to-date coverage of composite materials. The book focuses on the triad of processing, structure, and properties, while providing a well-balanced treatment of the materials science and mechanics of composites. In this edition of Composite Materials, revised and updated throughout, increasing use of composites in industry (especially aerospace and energy) and new developments in the field are highlighted. New material on the advances in non-conventional composites (which covers polymer, metal and ceramic matrix nanocomposites), self-healing composites, self-reinforced composites, biocomposites and laminates made of metals and polymer matrix composites is included. Examples of practical applications in various fields are provided throughout the book, with extensive references to the literature. The book is intended for use in graduate and upper-division undergraduate courses and as a reference for the practicing engineers and researchers in industry and academia.
None
Updated discussion of the processing, microstructure, properties, and applications of fibers such as polymers, metals, ceramics and glass.
Materials science and engineering (MS&E) is by its very nature an inter disciplinary activity. Researchers from a wide variety of disciplines, metal lurgy, ceramics, physics, chemistry, mechanics, electrical and electronic engineering, etc. can and do participate in the MS&E activities. The need and desirability of such an interdisciplinary effort is understandable inas much as advanced or high-performance materials are critical for any of the modern industries. It is almost a given axiom that progress in any field (energy, building materials, transportation, electronics, aerospace, electric power, consumer products, etc.) depends on the availability of suitable In this regard, let me quote ...
The fifth volume of this six-volume compendium publishes technical guidance and properties on ceramic matrix composite material systems. The selected guidance on technical topics related to this class of composites includes material selection, processing, characterization, testing, data reduction, design, analysis, quality control, application, case histories, and lessons learned of typical ceramic matrix composite materials. Volume 5, which covers ceramic matrix composites, supersedes MIL-HDBK-17-5 of June 17, 2002. The Composite Materials Handbook, referred to by industry groups as CMH-17, is an engineering reference tool that contains over 1,000 records of the latest test data for polymer...
This new updated edition provides an unrivaled overview of fibrous materials, their processing, microstructure, properties, and applications. The entire range of fibrous materials is discussed in depth, from natural polymeric fibers such as silk and vegetable fibers, and synthetic polymeric fibers such as aramid and polyethylene, to metallic fibers including steel, tungsten, Nb-Ti, and Nb3Sn, ceramic fibers such as alumina and silicon carbide, and carbon and glass fibers. Fundamental concepts are explained clearly and concisely along with detail on applications in areas including medicine, aerospace, optical communications, and recycling. Significant recent advances are also covered, with new information on the electrospinning of fibers, carbon nanotubes, and photonic bandgap fibers, and detail on advances made in the production and control of microstructure in high stiffness and high strength fibers. Accessibly written and unrivaled in scope, this is an ideal resource for students and researchers in materials science, physics, chemistry, and engineering.
Includes numerous examples and problems for student practice, this textbook is ideal for courses on the mechanical behaviour of materials taught in departments of mechanical engineering and materials science.
Fully revised and updated, the new edition of this classic textbook places a stronger emphasis on real-world test data and trains students in practical materials applications; introduces new testing techniques such as micropillar compression and electron back scatted diffraction; and presents new coverage of biomaterials, electronic materials, and cellular materials alongside established coverage of metals, polymers, ceramics and composites. Retaining its distinctive emphasis on a balanced mechanics-materials approach, it presents fundamental mechanisms operating at micro- and nanometer scales across a wide range of materials, in a way that is mathematically simple and requires no extensive knowledge of materials, and demonstrates how these microstructures determine the mechanical properties of materials. Accompanied by online resources for instructors, and including over 40 new figures, over 100 worked examples, and over 740 exercises, including over 280 new exercises, this remains the ideal introduction for senior undergraduate and graduate students in materials science and engineering.