You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
An overview of the current state of nanotechnology-based devices with applications in environmental science, focusing on nanomaterials and polymer nanocomposites. The handbook pays special attention to those nanotechnology-based approaches that promise easier, faster and cheaper processes in environmental monitoring and remediation. Furthermore, it presents up-to-date information on the economics, toxicity and regulations related to nanotechnology in detail. The book closes with a look at the role of nanotechnology for a green and sustainable future. With its coverage of existing and soon-to-be-realized devices this is an indispensable reference for both academic and corporate R&D.
Environmental analysis techniques have advanced due to the use of nanotechnologies in improving the detection sensitivity and miniaturization of the devices in analytical procedures. These allow for developments such as increases in analyte concentration, the removal of interfering species and improvements in the detection limits. Bridging a gap in the literature, this book uniquely brings together state-of-the-art research in the applications of novel nanomaterials to each of the classical components of environmental analysis, namely sample preparation and extraction, separation and identification by spectroscopic techniques. Special attention is paid to those approaches that are considered greener and reduce the cost of the analysis process both in terms of chemicals and time consumption. Advanced undergraduates, graduates and researchers at the forefront of environmental science and engineering will find this book a good source of information. It will also help regulators, decision makers, surveillance agencies and the organizations assessing the impact of pollutants on the environment.
Molecular Dynamics is a two-volume compendium of the ever-growing applications of molecular dynamics simulations to solve a wider range of scientific and engineering challenges. The contents illustrate the rapid progress on molecular dynamics simulations in many fields of science and technology, such as nanotechnology, energy research, and biology, due to the advances of new dynamics theories and the extraordinary power of today's computers. This second book begins with an introduction of molecular dynamics simulations to macromolecules and then illustrates the computer experiments using molecular dynamics simulations in the studies of synthetic and biological macromolecules, plasmas, and nanomachines. Coverage of this book includes: Complex formation and dynamics of polymers Dynamics of lipid bilayers, peptides, DNA, RNA, and proteins Complex liquids and plasmas Dynamics of molecules on surfaces Nanofluidics and nanomachines
This book covers the proceedings of ICISSI 2022 (International Conference on Intelligent Systems and Smart Infrastructure) held at Prayagraj, Uttar Pradesh during April 21–22, 2022. The conference was jointly organised by Shambhunath Institute of Engineering and Technology, Prayagraj UP India, Institute of Engineering and Technology (IET) Lucknow, U.P India, and Manipal University Jaipur, Rajasthan India with an aim to provide a platform for researchers, scientists, technocrats, academicians and engineers to exchange their innovative ideas and new challenges being faced in the field of emerging technologies. The papers presented in the conference have been compiled in form of chapters to focus on the core technological developments in the emerging fields like machine learning, intelligence systems, smart infrastructure, advanced power technology etc.
The book discusses nano-phytoremediation: the use of nanotechnology in combination with phytoremediation to restore polluted environs. The potentiality of plants in association with nanomaterials to effectively remediate polluted areas is elaborated meritoriously in this book. New strategies are necessary because anthropogenic actions represent a serious threat to life on Earth. This book has given enough space for a discussion of innovative and efficient technologies to restore damaged environs primarily focused on nano-phytoremediation. The first part of the book is dedicated to exploring organic and inorganic pollution and the threats they pose to living forms. The second part explores th...
This book highlights the innovations and techniques to identify and treat emerging pollutants in waste and polluted water. It begins with the classification of emerging pollutants and is followed by a review on existing detection and elimination techniques as well as the current regulations in place. Subsequent chapters cover membrane-based separation processes, polymer-based or resin-based water filters, functional materials, nanomaterials-based adsorbents, microplastics and a summary of the potential solutions in treating or removing emerging pollutants. Features Presents an overview of current and developing treatment technologies for water polluted with emerging pollutants Gives an in-depth account and analysis of advanced materials and methods for separation and treatment Reviews analytical techniques applied to detect emerging pollutants Discusses the overall effect of policies on current chemicals/plastics/APIs in the market Includes pertinent case studies and regulations This book is aimed at researchers, professionals and graduate students in environmental, civil and chemical engineering and waste and drinking water treatment.
This book describes the biogenic and green synthesis of gold, palladium and platinum nanoparticles through a variety of methods. 80% of the world’s population use traditional medicinal plants as the primary form of healthcare. Biogenic nanoparticles are those particles which are synthesized by biogenic systems like plants, microbes, and fishes. Different plants possess different properties according to their use in fighting against disease. The biological synthesis of metal nanoparticles is mainly a strategy which is employed to protect against toxic and harsh effects that can often arise in the normal synthesis of such particles. The book explains the properties of gold, palladium and platinum metal nanoparticles and discusses the mechanisms behind biological synthesis. It emphasises the basic idea of various syntheses and will, therefore, be of particular support to potential researchers interested in plant synthesis.
There is a growing interest in applying the UN's sustainable development goals to a variety of sectors. One can use certain principles of green chemistry in the emerging fields of nanoscience and nanotechnology. The green chemistry approach focuses on the creation of nanodimensional materials that have a low environmental impact, are cost-effective, and have no negative consequences on the environment. This book aims to summarise the different alternative green chemical routes. Furthermore, the book describes the use of nano-dimensional materials for sustainable energy generation and environmental remediation applications.
Capillary electrophoresis (CE) has become an established method with widespread recognition as an analytical technique of choice in numerous analytical laboratories, including industrial and academic sectors. Pharmaceutical and biochemical research and quality control are the most important CE applications. This book provides a comparative assessment of related techniques on mode selection, method development, detection, and quantitative analysis and estimation of pharmacokinetic parameters and broadens the understanding of modern CE applications, developments, and prospects. It introduces the fundamentals of CE and clearly outlines the procedures used to mitigate several barriers, such as detection limits, signal detection, changing capillary environment, resolution separation of analytes, and hyphenation of mass spectrometry with CE, for a range of analytical problems. Each chapter outlines a specific electrophoretic variant with detailed instructions and some standard operating procedures. In this respect, the book meets its desired goal of rendering assistance to lovers of electrophoresis.
Biocomposites, formed by a matrix and a reinforcement of natural fibers, often mimic the structure of living materials and offer the strength of the matrix as well as biocompatibility. Being renewable, cheap, recyclable, and biodegradable, they have witnessed rapidly growing interest in terms of industrial and fundamental applications. This book focuses on fiber-based composites applied to biomedical and environmental applications. It presents a comprehensive survey of biocomposites from the existing literature, paying particular attention to various biomedical and environmental applications. The text describes mechanical designs and manufacturing aspects of various fibrous polymer matrix composites and presents examples of the synthesis and development of bionanocomposites and their applications. The book is the first of its kind to present all these topics together unlike most other books on nano-/biocomposites that are generally limited to their fundamentals, different methods of synthesis, and applications.