You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A collection of applied papers on time series, appearing here for the first time in English. The applications are primarily found in engineering and the physical sciences.
This book reports recent major advances in automated reasoning in geometry. The authors have developed a method and implemented a computer program which, for the first time, produces short and readable proofs for hundreds of geometry theorems.The book begins with chapters introducing the method at an elementary level, which are accessible to high school students; latter chapters concentrate on the main theme: the algorithms and computer implementation of the method.This book brings researchers in artificial intelligence, computer science and mathematics to a new research frontier of automated geometry reasoning. In addition, it can be used as a supplementary geometry textbook for students, teachers and geometers. By presenting a systematic way of proving geometry theorems, it makes the learning and teaching of geometry easier and may change the way of geometry education.
None
Applied Nonlinear Analysis contains the proceedings of an International Conference on Applied Nonlinear Analysis, held at the University of Texas at Arlington, on April 20-22, 1978. The papers explore advances in applied nonlinear analysis, with emphasis on reaction-diffusion equations; optimization theory; constructive techniques in numerical analysis; and applications to physical and life sciences. In the area of reaction-diffusion equations, the discussions focus on nonlinear oscillations; rotating spiral waves; stability and asymptotic behavior; discrete-time models in population genetics; and predator-prey systems. In optimization theory, the following topics are considered: inverse and...
The method of least squares, discovered by Gauss in 1795, is a principal tool for reducing the influence of errors when fitting a mathematical model to given observations. Applications arise in many areas of science and engineering. The increased use of automatic data capturing frequently leads to large-scale least squares problems. Such problems can be solved by using recent developments in preconditioned iterative methods and in sparse QR factorization. The first edition of Numerical Methods for Least Squares Problems was the leading reference on the topic for many years. The updated second edition stands out compared to other books on this subject because it provides an in-depth and up-to...
This dictionary includes a number of mathematical, statistical and computing terms and their definitions to assist geoscientists and provide guidance on the methods and terminology encountered in the literature. Each technical term used in the explanations can be found in the dictionary which also includes explanations of basics, such as trigonometric functions and logarithms. There are also citations from the relevant literature to show the term’s first use in mathematics, statistics, etc. and its subsequent usage in geosciences.
Highly computer-oriented text, introducing numerical methods and algorithms along with the applications and conceptual tools. Includes homework problems, suggestions for research projects, and open-ended questions at the end of each chapter. Written by our successful author who also wrote Continuous System Modeling, a best-selling Springer book first published in the 1991 (sold about 1500 copies).
Traditional quantum theory has a very rigid structure, making it difficult to accommodate new properties emerging from novel systems. This book presents a flexible and unified theory for physical systems, from micro and macro quantum to classical. This is achieved by incorporating superselection rules and maximal symmetric operators into the theory. The resulting theory is applicable to classical, microscopic quantum and non-orthodox mixed quantum systems of which macroscopic quantum systems are examples. A unified formalism also greatly facilitates the discussion of interactions between these systems. A scheme of quantization by parts is introduced, based on the mathematics of selfadjoint a...