You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
None
This volume commemorates the life, work and foundational views of Kurt Gödel (1906–78), most famous for his hallmark works on the completeness of first-order logic, the incompleteness of number theory, and the consistency - with the other widely accepted axioms of set theory - of the axiom of choice and of the generalized continuum hypothesis. It explores current research, advances and ideas for future directions not only in the foundations of mathematics and logic, but also in the fields of computer science, artificial intelligence, physics, cosmology, philosophy, theology and the history of science. The discussion is supplemented by personal reflections from several scholars who knew Gödel personally, providing some interesting insights into his life. By putting his ideas and life's work into the context of current thinking and perceptions, this book will extend the impact of Gödel's fundamental work in mathematics, logic, philosophy and other disciplines for future generations of researchers.
Contents: P. Vihan: The Last Month of Gerhard Gentzen in Prague. - F.A. Rodríguez-Consuegra: Some Issues on Gödel’s Unpublished Philosophical Manuscripts. - D.D. Spalt: Vollständigkeit als Ziel historischer Explikation. Eine Fallstudie. - E. Engeler: Existenz und Negation in Mathematik und Logik. - W.J. Gutjahr: Paradoxien der Prognose und der Evaluation: Eine fixpunkttheoretische Analyse. - R. Hähnle: Automated Deduction and Integer Programming. - M. Baaz, A. Leitsch: Methods of Functional Extension.
The proceedings of the conference 'Logical Foundations of Mathematics, Computer Science, and Physics - Kurt Gödel's Legacy', held in Brno, Czech Republic, on the 90th anniversary of Gödel's birth. The papers in this volume cover the wide range of topics Gödel's work touched, and affirm its continuing importance.
This authoritative biography of Kurt Goedel relates the life of this most important logician of our time to the development of the field. Goedel's seminal achievements that changed the perception and foundations of mathematics are explained in the context of his life from the turn of the century Austria to the Institute for Advanced Study in Princeton.
Descriptive set theory is mainly concerned with studying subsets of the space of all countable binary sequences. In this paper the authors study the generalization where countable is replaced by uncountable. They explore properties of generalized Baire and Cantor spaces, equivalence relations and their Borel reducibility. The study shows that the descriptive set theory looks very different in this generalized setting compared to the classical, countable case. They also draw the connection between the stability theoretic complexity of first-order theories and the descriptive set theoretic complexity of their isomorphism relations. The authors' results suggest that Borel reducibility on uncountable structures is a model theoretically natural way to compare the complexity of isomorphism relations.
"Anyone interested in the life and work of Kurt Gödel, or in the history of mathematical logic in this century, is indebted to all of the contributors to this volume for the care with which they have presented Gödel's work. They have succeeded in using their own expertise to elucidate both the nature and significance of what Gödel and, in turn, mathematical logic have accomplished." --Isis (on volume I). The third volume brings togetherGödels unpublished essays and lectures.
Kurt Gödel was an intellectual giant. His Incompleteness Theorem turned not only mathematics but also the whole world of science and philosophy on its head. Shattering hopes that logic would, in the end, allow us a complete understanding of the universe, Gödel's theorem also raised many provocative questions: What are the limits of rational thought? Can we ever fully understand the machines we build? Or the inner workings of our own minds? How should mathematicians proceed in the absence of complete certainty about their results? Equally legendary were Gödel's eccentricities, his close friendship with Albert Einstein, and his paranoid fear of germs that eventually led to his death from self-starvation. Now, in the first book for a general audience on this strange and brilliant thinker, John Casti and Werner DePauli bring the legend to life.
Kurt Gödel (1906 - 1978) was the most outstanding logician of the twentieth century. These collected works form the only comprehensive edition of Gödel's work available and are designed to be useful and accessible to as wide an audience as possible without sacrificing scientific or historical accuracy.
First English translation of revolutionary paper (1931) that established that even in elementary parts of arithmetic, there are propositions which cannot be proved or disproved within the system. Introduction by R. B. Braithwaite.