You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
None
Understanding the origin of spatio-temporal order in open systems far from thermal equilibrium and the selection mechanisms of spatial struc tures and their symmetries is a major theme of present day research into the structures of continuous matter. The development of methods for pro ducing spatially ordered microstructures in solids by non-equilibrium methods opens the door to many technological applications. It is also be lieved that the key to laminar/turbulence transitions in fluids lies in the achievement of spatio-temporal order. Let us also emphasize the fact that the idea of self-organization in it self is at the origin of a reconceptualisation of science. Indeed, the appear ance of...
Covering the latest research in alloy physics together with the underlying basic principles, this comprehensive book provides a sound understanding of the structural changes in metals and alloys -- ranging from plastic deformation, deformation dynamics and ordering kinetics right up to atom jump processes, first principle calculations and simulation techniques. Alongside fundamental topics, such as crystal defects, phase transformations and statistical thermodynamics, the team of international authors treats such hot areas as nano-size effects, interfaces, and spintronics, as well as technical applications of modern alloys, like data storage and recording, and the possibilities offered by materials design.
Post Genomic Perspectives in Modeling and Control of Breathing is comprised of the proceedings of the IXth Oxford Conference on Modeling and Control of Breathing, held September 13-16, 2003 in Paris, France. This publication is placed within the general framework of post-genomic neurobiology, pathology, and the precise example of the rhythmic respiratory neural assembly being used to understand how genetic networks have been selected and conserved in the vertebrate brain. Specific topics include: ion channels and synapses responsible for respiratory rhythmogenesis and plasticity; pre- and post-natal development of the respiratory rhythm; chemosensory transduction and chemo-afferent signalling. These valuable insights open new avenues as to why the genetic codes underlying a vital function such as breathing have been selected, conserved, or optimized during evolution – a major issue of post-genomic biology. This critical issue will be considered from both top-down and bottom-up integrative modeling standpoints, with a view to elucidating the functional genomics linking discrete molecules to the integrated system that regulates breathing.
Respiratory Neurobiology: Physiology and Clinical Disorders, Part One, Volume 188 is one of two volumes on the neurology of breathing. This volume focuses on the neurophysiology of breathing, while the second volume focuses on pathologies attributable to abnormalities of the neural control of breathing, breathing problems that may occur in neurological diseases, and the neurological complications of respiratory diseases. - Explores the assessment and treatment of neural disorders of breathing - Identifies neural complications of respiratory diseases - Includes SIDS, stroke, Parkinson's, dementia, epilepsy, muscular dystrophy, and more
The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by a...
This book presents a unique combination of chapters that together provide a practical introduction to multiscale modeling applied to nanoscale materials mechanics. The goal of this book is to present a balanced treatment of both the theory of the methodology, as well as some practical aspects of conducting the simulations and models. The first half of the book covers some fundamental modeling and simulation techniques ranging from ab-inito methods to the continuum scale. Included in this set of methods are several different concurrent multiscale methods for bridging time and length scales applicable to mechanics at the nanoscale regime. The second half of the book presents a range of case st...
Animal Biotechnology introduces applications of animal biotechnology and implications for human health and welfare. It begins with an introduction to animal cell cultures and genome sequencing analysis and provides readers with a review of available cell and molecular tools. Topics here include the use of transgenic animal models, tissue engineering, nanobiotechnology, and proteomics. The book then delivers in-depth examples of applications in human health and prospects for the future, including cytogenetics and molecular genetics, xenografts, and treatment of HIV and cancers. All this is complemented by a discussion of the ethical and safety considerations in the field.Animal biotechnology ...
This book is an excellent introduction to the concept of scale invariance, which is a growing field of research with wide applications. It describes where and how symmetry under scale transformation (and its various forms of partial breakdown) can be used to analyze solutions of a problem without the need to explicitly solve it. The first part gives descriptions of tools and concepts; the second is devoted to recent attempts to go beyond the invariance or symmetry breaking, to discuss causes and consequences, and to extract useful information about the system. Examples are carefully worked out in fields as diverse as condensed matter physics, population dynamics, earthquake physics, turbulence, cosmology and finance.
Engineering materials with desirable physical and technological properties requires understanding and predictive capability of materials behavior under varying external conditions, such as temperature and pressure. This immediately brings one face to face with the fundamental difficulty of establishing a connection between materials behavior at a microscopic level, where understanding is to be sought, and macroscopic behavior which needs to be predicted. Bridging the corresponding gap in length scales that separates the ends of this spectrum has been a goal intensely pursued by theoretical physicists, experimentalists, and metallurgists alike. Traditionally, the search for methods to bridge ...