You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Communicable diseases have been an important part of human history. Epidemics afflicted populations, causing many deaths before gradually fading away and emerging again years after. Epidemics of infectious diseases are occurring more often, and spreading faster and further than ever, in many different regions of the world. The scientific community, in addition to its accelerated efforts to develop an effective treatment and vaccination, is also playing an important role in advising policymakers on possible non-pharmacological approaches to limit the catastrophic impact of epidemics using mathematical and machine learning models. Controlling Epidemics With Mathematical and Machine Learning Mo...
This book contains the best selected research papers presented at ICTCS 2020: Fifth International Conference on Information and Communication Technology for Competitive Strategies. The conference was held at Jaipur, Rajasthan, India, during 11–12 December 2020. The book covers state-of-the-art as well as emerging topics pertaining to ICT and effective strategies for its implementation for engineering and managerial applications. This book contains papers mainly focused on ICT for computation, algorithms and data analytics, and IT security.
Robotics plays a pivotal role in many domains such as industry and medicine. Robots allow for increased safety, production rates, accuracy, and quality; however, robots must be well designed and controlled to achieve the required performance. The design and control of robotics involve many varying disciplines, such as mechanical engineering, electronics, and automation, and must be further studied to ensure the technology is utilized appropriately. Design and Control Advances in Robotics considers the most recent applications and design advances in robotics and highlights the latest developments and applications within the field of robotics. Covering key topics such as deep learning, machine learning, programming, automation, and control advances, this reference work is ideal for engineers, computer scientists, industry professionals, academicians, practitioners, scholars, researchers, instructors, and students.
Recent advances in socio-cognitive and affective computing require further study as countless benefits and opportunities have emerged from these innovative technologies that may be useful in a number of contexts throughout daily life. In order to ensure these technologies are appropriately utilized across sectors, the challenges and strategies for adoption as well as potential uses must be thoroughly considered. Principles and Applications of Socio-Cognitive and Affective Computing discusses several aspects of affective interactions and concepts in affective computing, the fundamentals of emotions, and emerging research and exciting techniques for bridging the emotional disparity between hum...
Advanced computational intelligence techniques have been designed and developed in recent years to cope with various big data challenges and provide fast and efficient analytics that assist in making critical decisions. With the rapid evolution and development of internet-based services and applications, this technology is receiving attention from researchers, industries, and academic communities and requires additional study. Convergence of Big Data Technologies and Computational Intelligent Techniques considers recent advancements in big data and computational intelligence across fields and disciplines and discusses the various opportunities and challenges of adoption. Covering topics such as deep learning, data mining, smart environments, and high-performance computing, this reference work is crucial for computer scientists, engineers, industry professionals, researchers, scholars, practitioners, academicians, instructors, and students.
The rapid growth and capability of artificial intelligence, digital twin, and the internet of things are unlocking incredible opportunities to overcome some of the greatest environmental and social impact challenges currently facing the global community, such as feeding a growing population, safety, affordable housing, and environmental sustainability. The Handbook of Research on Applications of AI, Digital Twin, and Internet of Things for Sustainable Development provides an interdisciplinary platform encompassing research on the potential opportunities and risks of reaching sustainable development using artificial intelligence, digital twin, and the internet of things. Covering key topics such as big data, environmental protection, and smart cities, this major reference work is ideal for computer scientists, industry professionals, researchers, scholars, academicians, librarians, policymakers, practitioners, educators, and students.
Digital technology has enabled a number of internet-enabled devices that generate huge volumes of data from different systems. This large amount of heterogeneous data requires efficient data collection, processing, and analytical methods. Deep Learning is one of the latest efficient and feasible solutions that enable smart devices to function independently with a decision-making support system. Convergence of Deep Learning and Internet of Things: Computing and Technology contributes to technology and methodology perspectives in the incorporation of deep learning approaches in solving a wide range of issues in the IoT domain to identify, optimize, predict, forecast, and control emerging IoT systems. Covering topics such as data quality, edge computing, and attach detection and prediction, this premier reference source is a comprehensive resource for electricians, communications specialists, mechanical engineers, civil engineers, computer scientists, students and educators of higher education, librarians, researchers, and academicians.
Artificial intelligence has been utilized in a diverse range of industries as more people and businesses discover its many uses and applications. A current field of study that requires more attention, as there is much opportunity for improvement, is the use of artificial intelligence within literary works and social media analysis. The Handbook of Research on Artificial Intelligence Applications in Literary Works and Social Media presents contemporary developments in the adoption of artificial intelligence in textual analysis of literary works and social media and introduces current approaches, techniques, and practices in data science that are implemented to scrap and analyze text data. This book initiates a new multidisciplinary field that is the combination of artificial intelligence, data science, social science, literature, and social media study. Covering key topics such as opinion mining, sentiment analysis, and machine learning, this reference work is ideal for computer scientists, industry professionals, researchers, scholars, practitioners, academicians, instructors, and students.
In recent decades, there has been an increasing interest in using machine learning and, in the last few years, deep learning methods combined with other vision and image processing techniques to create systems that solve vision problems in different fields. There is a need for academicians, developers, and industry-related researchers to present, share, and explore traditional and new areas of computer vision, machine learning, deep learning, and their combinations to solve problems. The Handbook of Research on Computer Vision and Image Processing in the Deep Learning Era is designed to serve researchers and developers by sharing original, innovative, and state-of-the-art algorithms and arch...
Humans have the most advanced method of communication, which is known as natural language. While humans can use computers to send voice and text messages to each other, computers do not innately know how to process natural language. In recent years, deep learning has primarily transformed the perspectives of a variety of fields in artificial intelligence (AI), including speech, vision, and natural language processing (NLP). The extensive success of deep learning in a wide variety of applications has served as a benchmark for the many downstream tasks in AI. The field of computer vision has taken great leaps in recent years and surpassed humans in tasks related to detecting and labeling objec...