You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The computer science problem whose solution could transform life as we know it The P-NP problem is the most important open problem in computer science, if not all of mathematics. Simply stated, it asks whether every problem whose solution can be quickly checked by computer can also be quickly solved by computer. The Golden Ticket provides a nontechnical introduction to P-NP, its rich history, and its algorithmic implications for everything we do with computers and beyond. Lance Fortnow traces the history and development of P-NP, giving examples from a variety of disciplines, including economics, physics, and biology. He explores problems that capture the full difficulty of the P-NP dilemma, from discovering the shortest route through all the rides at Disney World to finding large groups of friends on Facebook. The Golden Ticket explores what we truly can and cannot achieve computationally, describing the benefits and unexpected challenges of this compelling problem.
Briefly, we review the basic elements of computability theory and prob ability theory that are required. Finally, in order to place the subject in the appropriate historical and conceptual context we trace the main roots of Kolmogorov complexity. This way the stage is set for Chapters 2 and 3, where we introduce the notion of optimal effective descriptions of objects. The length of such a description (or the number of bits of information in it) is its Kolmogorov complexity. We treat all aspects of the elementary mathematical theory of Kolmogorov complexity. This body of knowledge may be called algo rithmic complexity theory. The theory of Martin-Lof tests for random ness of finite objects an...
The Principia Mathematica has long been recognised as one of the intellectual landmarks of the century.
An accessible and rigorous textbook for introducing undergraduates to computer science theory What Can Be Computed? is a uniquely accessible yet rigorous introduction to the most profound ideas at the heart of computer science. Crafted specifically for undergraduates who are studying the subject for the first time, and requiring minimal prerequisites, the book focuses on the essential fundamentals of computer science theory and features a practical approach that uses real computer programs (Python and Java) and encourages active experimentation. It is also ideal for self-study and reference. The book covers the standard topics in the theory of computation, including Turing machines and finit...
How does one effectively aggregate disparate pieces of information that are spread among many different individuals? In other words, how does one best access the ‘wisdom of the crowd’? Prediction markets, which are essentially speculative markets created for the purpose of aggregating information and making predictions, offer the answer to this question. The effective use of these markets has the potential not only to help forecast future events on a national and international level, but also to assist companies, for example, in providing improved estimates of the potential market size for a new product idea or the launch date of new products and services. The markets have already been u...
The boundary between physics and computer science has become a hotbed of interdisciplinary collaboration. In this book the authors introduce the reader to the fundamental concepts of computational complexity and give in-depth explorations of the major interfaces between computer science and physics.
The primary goal of this book is unifying and making more widely accessible the vibrant stream of research - spanning more than two decades - on the theory of semi-feasible algorithms. In doing so it demonstrates the richness inherent in central notions of complexity: running time, nonuniform complexity, lowness, and NP-hardness. The book requires neither great mathematical maturity nor an extensive background in computational complexity theory or in computer science. Another aim of this book is to lay out a path along which the reader can quickly reach the frontiers of current research, and meet and engage the many exciting open problems in this area.
This volume contains the proceedings of the 14th Annual International S- posium on Algorithms and Computation (ISAAC 2003), held in Kyoto, Japan, 15–17 December 2003. In the past, it was held in Tokyo (1990), Taipei (1991), Nagoya (1992), Hong Kong (1993), Beijing (1994), Cairns (1995), Osaka (1996), Singapore (1997), Taejon (1998), Chennai (1999), Taipei (2000), Christchurch (2001), and Vancouver (2002). ISAACisanannualinternationalsymposiumthatcoverstheverywiderange of topics in algorithms and computation. The main purpose of the symposium is to provide a forum for researchers working in algorithms and the theory of computation where they can exchange ideas in this active research commun...
Questions about access to scholarship have always raged. The great libraries of the past stood as arguments for increasing access. John Willinsky describes the latest chapter in this ongoing story - online open access publishing by scholarly journals and makes a case for open access as a public good.
The story of one of the greatest unsolved problems in mathematics What is the shortest possible route for a traveling salesman seeking to visit each city on a list exactly once and return to his city of origin? It sounds simple enough, yet the traveling salesman problem is one of the most intensely studied puzzles in applied mathematics—and it has defied solution to this day. In this book, William Cook takes readers on a mathematical excursion, picking up the salesman's trail in the 1800s when Irish mathematician W. R. Hamilton first defined the problem, and venturing to the furthest limits of today’s state-of-the-art attempts to solve it. He also explores its many important applications, from genome sequencing and designing computer processors to arranging music and hunting for planets. In Pursuit of the Traveling Salesman travels to the very threshold of our understanding about the nature of complexity, and challenges you yourself to discover the solution to this captivating mathematical problem.