You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Over the years, this book has become a standard reference and guide in the set theory community. It provides a comprehensive account of the theory of large cardinals from its beginnings and some of the direct outgrowths leading to the frontiers of contemporary research, with open questions and speculations throughout.
This volume is an introduction to inner model theory, an area of set theory which is concerned with fine structural inner models reflecting large cardinal properties of the set theoretic universe. The monograph contains a detailed presentation of general fine structure theory as well as a modern approach to the construction of small core models, namely those models containing at most one strong cardinal, together with some of their applications. The final part of the book is devoted to a new approach encompassing large inner models which admit many Woodin cardinals. The exposition is self-contained and does not assume any special prerequisities, which should make the text comprehensible not only to specialists but also to advanced students in Mathematical Logic and Set Theory.
Set Theory
Our much-valued mathematical knowledge rests on two supports: the logic of proof and the axioms from which those proofs begin. Naturalism in Mathematics investigates the status of the latter, the fundamental assumptions of mathematics. These were once held to be self-evident, but progress in work on the foundations of mathematics, especially in set theory, has rendered that comforting notion obsolete. Given that candidates for axiomatic status cannot be proved, what sorts of considerations can be offered for or against them? That is the central question addressed in this book. One answer is that mathematics aims to describe an objective world of mathematical objects, and that axiom candidate...
During the Fall Semester of 1987, Stevo Todorcevic gave a series of lectures at the University of Colorado. These notes of the course, taken by the author, give a novel and fast exposition of four chapters of Set Theory. The first two chapters are about the connection between large cardinals and Lebesque measure. The third is on forcing axioms such as Martin's axiom or the Proper Forcing Axiom. The fourth chapter looks at the method of minimal walks and p-functions and their applications. The book is addressed to researchers and graduate students interested in Set Theory, Set-Theoretic Topology and Measure Theory.
Numbers imitate space, which is of such a di?erent nature —Blaise Pascal It is fair to date the study of the foundation of mathematics back to the ancient Greeks. The urge to understand and systematize the mathematics of the time led Euclid to postulate axioms in an early attempt to put geometry on a ?rm footing. With roots in the Elements, the distinctive methodology of mathematics has become proof. Inevitably two questions arise: What are proofs? and What assumptions are proofs based on? The ?rst question, traditionally an internal question of the ?eld of logic, was also wrestled with in antiquity. Aristotle gave his famous syllogistic s- tems, and the Stoics had a nascent propositional ...
None
Following the success of Logic for Mathematicians, Dr Hamilton has written a text for mathematicians and students of mathematics that contains a description and discussion of the fundamental conceptual and formal apparatus upon which modern pure mathematics relies. The author's intention is to remove some of the mystery that surrounds the foundations of mathematics. He emphasises the intuitive basis of mathematics; the basic notions are numbers and sets and they are considered both informally and formally. The role of axiom systems is part of the discussion but their limitations are pointed out. Formal set theory has its place in the book but Dr Hamilton recognises that this is a part of mathematics and not the basis on which it rests. Throughout, the abstract ideas are liberally illustrated by examples so this account should be well-suited, both specifically as a course text and, more broadly, as background reading. The reader is presumed to have some mathematical experience but no knowledge of mathematical logic is required.
None
This textbook gives an introduction to axiomatic set theory and examines the prominent questions that are relevant in current research in a manner that is accessible to students. Its main theme is the interplay of large cardinals, inner models, forcing and descriptive set theory. The following topics are covered: • Forcing and constructability • The Solovay-Shelah Theorem i.e. the equiconsistency of ‘every set of reals is Lebesgue measurable’ with one inaccessible cardinal • Fine structure theory and a modern approach to sharps • Jensen’s Covering Lemma • The equivalence of analytic determinacy with sharps • The theory of extenders and iteration trees • A proof of projective determinacy from Woodin cardinals. Set Theory requires only a basic knowledge of mathematical logic and will be suitable for advanced students and researchers.