You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book constitutes the proceedings of the 21st International Conference on Discovery Science, DS 2018, held in Limassol, Cyprus, in October 2018, co-located with the International Symposium on Methodologies for Intelligent Systems, ISMIS 2018. The 30 full papers presented together with 5 abstracts of invited talks in this volume were carefully reviewed and selected from 71 submissions. The scope of the conference includes the development and analysis of methods for discovering scientific knowledge, coming from machine learning, data mining, intelligent data analysis, big data analysis as well as their application in various scientific domains. The papers are organized in the following topical sections: Classification; meta-learning; reinforcement learning; streams and time series; subgroup and subgraph discovery; text mining; and applications.
This book consists of different accepted papers of the conference. Firstly, the artificial intelligence and its application-related topics are provided. Secondly, cloud computing and related topics are also provided. The book has been designed to help research organisations and business leaders from across industries to transform their organisations into AI-driven disruptors. The utility of the technology in the face of massive globally interconnected complexity is explored. The significant characteristics of IEMAICLOUD are the promotion of inevitable dialogue between scientists, researchers, engineers, corporate’s and scholar’s students to mitigate the gap between academia, industry and...
This book is about inductive databases and constraint-based data mining, emerging research topics lying at the intersection of data mining and database research. The aim of the book as to provide an overview of the state-of- the art in this novel and - citing research area. Of special interest are the recent methods for constraint-based mining of global models for prediction and clustering, the uni?cation of pattern mining approaches through constraint programming, the clari?cation of the re- tionship between mining local patterns and global models, and the proposed in- grative frameworks and approaches for inducive databases. On the application side, applications to practically relevant pro...
The study of patterns in the context of ontology engineering for the semantic web was pioneered more than a decade ago by Blomqvist, Sandkuhl and Gangemi. Since then, this line of research has flourished and led to the development of ontology design patterns, knowledge patterns, and linked data patterns: the patterns as they are known by ontology designers, knowledge engineers, and linked data publishers, respectively. A key characteristic of those patterns is that they are modular and reusable solutions to recurrent problems in ontology engineering and linked data publishing. This book contains recent contributions which advance the state of the art on theory and use of ontology design patterns. The papers collected in this book cover a range of topics, from a method to instantiate content patterns, a proposal on how to document a content pattern, to a number of patterns emerging in ontology modeling in various situations.
This book constitutes the thoroughly refereed post-workshop proceedings of the 12th OWL: Experiences and Directions Workshop, OWLED 2015, held in Bethlehem, PA, USA, in October 2015, co-located with ISWC 2015, the International Semantic Web Conference. The 18 revised papers presented were carefully reviewed and selected from 35 initial submissions. Bridging the gap between ontology engineering practices and software engineering, the papers describe reuse methods employed throughout the ontology development cycle; modeling / terminological decisions, alignment and comparison between ontologies, how ontologies are stored, versioned, distributed, and consumed over the Web.
This book traces the academic footprint of Hanns Ullrich. Thirty contributions revolve around five central topics of his oeuvre: the European legal order, competition law, intellectual property, the regulation of new technologies, and the global market order. Acknowledging him as a trailblazer, the book aims to capture how deeply Hanns Ullrich has influenced contemporaries and subsequent generations of scholars. The contributors re-iterate the path-breaking patterns of his teachings, such as his contemplation of intellectual property as embedded in competition, the necessity of balancing private and public interests in intellectual property law, the policies of market integration, and the peculiar relationship of technological advancement and protectionism.
This book constitutes the proceedings of the 17th International Conference on Discovery Science, DS 2014, held in Bled, Slovenia, in October 2014. The 30 full papers included in this volume were carefully reviewed and selected from 62 submissions. The papers cover topics such as: computational scientific discovery; data mining and knowledge discovery; machine learning and statistical methods; computational creativity; mining scientific data; data and knowledge visualization; knowledge discovery from scientific literature; mining text, unstructured and multimedia data; mining structured and relational data; mining temporal and spatial data; mining data streams; network analysis; discovery informatics; discovery and experimental workflows; knowledge capture and scientific ontologies; data and knowledge integration; logic and philosophy of scientific discovery; and applications of computational methods in various scientific domains.
This book constitutes the proceedings of the 26th International Conference on Discovery Science, DS 2023, which took place in Porto, Portugal, in October 2023. The 37 full papers and 10 short papers presented in this volume were carefully reviewed and selected from 133 submissions. They were organized in topical sections as follows: Machine learning methods and applications; natural language processing and social media analysis; interpretability and explainability in AI; data analysis and optimization; fairness, privacy and security in AI; control and spatio-temporal modeling; graph theory and network analysis; time series and forecasting; healthcare and biological data analysis; anomaly, outlier and novelty detection.
This book constitutes the refereed proceedings of the 14th International Conference on Discovery Science, DS 2011, held in Espoo, Finland, in October 2011 - co-located with ALT 2011, the 22nd International Conference on Algorithmic Learning Theory. The 24 revised full papers presented together with 5 invited lectures were carefully revised and selected from 56 submissions. The papers cover a wide range including the development and analysis of methods for automatic scientific knowledge discovery, machine learning, intelligent data analysis, theory of learning, as well as their application to knowledge discovery.
This book constitutes the refereed proceedings of the 18th European Conference on Machine Learning, ECML 2007, held in Warsaw, Poland, September 2007, jointly with PKDD 2007. The 41 revised full papers and 37 revised short papers presented together with abstracts of four invited talks were carefully reviewed and selected from 592 abstracts submitted to both, ECML and PKDD. The papers present a wealth of new results in the area and address all current issues in machine learning.