You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Computational science is fundamentally changing how technological questions are addressed. The design of aircraft, automobiles, and even racing sailboats is now done by computational simulation. The mathematical foundation of this new approach is numerical analysis, which studies algorithms for computing expressions defined with real numbers. Emphasizing the theory behind the computation, this book provides a rigorous and self-contained introduction to numerical analysis and presents the advanced mathematics that underpin industrial software, including complete details that are missing from most textbooks. Using an inquiry-based learning approach, Numerical Analysis is written in a narrative...
Scientific computing is the study of how to use computers effectively to solve problems that arise from the mathematical modeling of phenomena in science and engineering. It is based on mathematics, numerical and symbolic/algebraic computations and visualization. This book serves as an introduction to both the theory and practice of scientific computing, with each chapter presenting the basic algorithms that serve as the workhorses of many scientific codes; we explain both the theory behind these algorithms and how they must be implemented in order to work reliably in finite-precision arithmetic. The book includes many programs written in Matlab and Maple – Maple is often used to derive numerical algorithms, whereas Matlab is used to implement them. The theory is developed in such a way that students can learn by themselves as they work through the text. Each chapter contains numerous examples and problems to help readers understand the material “hands-on”.
This is the third and yet further updated edition of a highly regarded mathematical text. Brenner develops the basic mathematical theory of the finite element method, the most widely used technique for engineering design and analysis. Her volume formalizes basic tools that are commonly used by researchers in the field but not previously published. The book is ideal for mathematicians as well as engineers and physical scientists. It can be used for a course that provides an introduction to basic functional analysis, approximation theory, and numerical analysis, while building upon and applying basic techniques of real variable theory. This new edition is substantially updated with additional exercises throughout and new chapters on Additive Schwarz Preconditioners and Adaptive Meshes.
This scientific book was written for specialists on the theory and application of numerical approximation techniques, primarily for mathematicians, scientists, and engineers. The book outlines numerical methods and their applications for systems of linear and nonlinear equations, interpolation, numerical integration and solving problems with differential equations, partial differential equations or fractional differential equations. It explores techniques in C++, Maple, and MATLAB, develops mathematical methods through computation and develops numerical methods in the context of case studies for data analysis, optimisation, linear algebra and differential equations.
Includes entries for maps and atlases.
Introduction to Automated Modeling with FEniCS exploressolution of partial differential equations via the finite element method. It illustrates the use of automated softwaregeneration via the FEniCS Project systems. The book reviews most common types of partial differential equations arising in technical simulation. It is ideal for engineers and for computational and applied mathematicians.
None
A rigorous and thorough mathematical introduction to the subject; A clear and concise treatment of modern fast solution techniques such as multigrid and domain decomposition algorithms; Second edition contains two new chapters, as well as many new exercises; Previous edition sold over 3000 copies worldwide
What does Google's management of billions of Web pages have in common with analysis of a genome with billions of nucleotides? Both apply methods that coordinate many processors to accomplish a single task. From mining genomes to the World Wide Web, from modeling financial markets to global weather patterns, parallel computing enables computations that would otherwise be impractical if not impossible with sequential approaches alone. Its fundamental role as an enabler of simulations and data analysis continues an advance in a wide range of application areas. Scientific Parallel Computing is the first textbook to integrate all the fundamentals of parallel computing in a single volume while als...
This book explores quantitative aspects of protein biophysics and attempts to delineate certain rules of molecular behavior that make atomic scale objects behave in a digital way. This book will help readers to understand how certain biological systems involving proteins function as digital information systems despite the fact that underlying processes are analog in nature. The in-depth explanation of proteins from a quantitative point of view and the variety of level of exercises (including physical experiments) at the end of each chapter will appeal to graduate and senior undergraduate students in mathematics, computer science, mechanical engineering, and physics, wanting to learn about th...