You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume, the result of three days of interactive sessions among world leaders in the cardiac sciences, summarizes the most up-to-date information about development and cardiogenesis signaling in cell-based therapy, as well as developmental aspects of the formation of the embryonic heart, including the effect of mechanical load on differentiation. Other topics covered include: signaling and repair strategies, cell and gene therapy for the treatment of postmyocardial infarction, signaling, vascularization methods in engineering embryonic cardiac tissue, and molecular methods to improve survival of human embryonic stem cell–derived cardiomyocytes; developmental and evolutional cardiology;...
This book examines key theoretical tools that are currently used to develop mathematical models as an aid in understanding the biological response of cells and tissues to mechanical stimuli. Problems in growth and remodeling, tissue and organ development, and functional adaptation are all covered. Chapters on tensor analysis and nonlinear elasticity provide the necessary background for understanding the engineering theories that are currently used to solve challenges in mechanobiology. This is an ideal book for biomechanical engineers who work on problems in mechanobiology and tissue engineering.
Recently, a new research stimulus has derived from the observation that soft structures, such as biological systems, but also rubber and gel, may work in a post critical regime, where elastic elements are subject to extreme deformations, though still exhibiting excellent mechanical performances. This is the realm of ‘extreme mechanics’, to which this book is addressed. The possibility of exploiting highly deformable structures opens new and unexpected technological possibilities. In particular, the challenge is the design of deformable and bi-stable mechanisms which can reach superior mechanical performances and can have a strong impact on several high-tech applications, including stretc...
This special volume of the Journal of Elasticity represents the first in a new p- gram dedicated to the occasional publication of collections of invited, reviewed papers of topical interest. The purpose of this program is to spotlight the dev- opments and applications in the mechanics of materials within specific areas that can enhance growth and provide insight for the advancement of the field as well as promote fundamental understanding and basic discovery. Soft Tissue Mechanics is an area of biomechanics that draws heavily upon f- damental ideas and material models from nonlinear elasticity and viscoelasticity. A major goal of this research is to understand those mechanics properties of h...
None
This book presents a comprehensive review of various aspects of the novel and rapidly developing field of active matter, which encompasses a wide variety of self-organized self-driven energy-consuming media or agents. Most naturally occurring examples are of biological origin, spanning all scales from intracellular structures to swimming and crawling cells and microorganisms, to living tissues, bacterial colonies and flocks of birds. But the field also encompasses artificial systems, from colloids to soft robots. Intrinsically out of equilibrium and free of constraints of time-reversal symmetry, such systems display a range of surprising and unusual behaviors. In this book, the author emphasizes connections between fluid-mechanical, material, biological and technological aspects of active matter. He employs a minimum of mathematical tools, ensuring that the presentation is accessible to a wider scientific community. Richly illustrated, it gives the reader a clear picture of this fascinating field, its diverse phenomena and its open questions.
This book is about morphogenesis as the genesis of forms. It is not restricted to plants growing from seed or animals developing from an embryo (although these do supply the most abundant examples) but also addresses kindred processes, from inorganic to social to biomorphic technology. It is about our morphogenetic universe: unplanned, unfair and frustratingly complicated but benevolent in allowing us to emerge, survive, and inquire into its laws.