You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A comprehensive, up-to-date review of the physics and applications of a major class of laser, the most important example of which is the copper vapour laser. A collection of 50 papers written by the world's leaders in the field. Papers cover: the early history of pulsed metal vapour lasters; the plasma kinetics and excitation mechanisms of self terminating and recombination metal vapour lasers; beam quality issues for applications; frequency harmonic generation for mid-UV applications; high-precision processing of metals, ceramics, glasses and plastics using metal vapour lasers; applications in medicine, including oncology and dermatology; applications in science such as spectroscopy and mass spectrometry. A practical source of information on the physics, engineering and applications of metal vapour lasers. Audience: scientists, teachers and graduate researchers working in the fields of gas lasers, laser optics, gas discharges, optoelectronics and laser applications in industry, science and medicine.
If a basic advance in physics has any practical applications, among the first are those in biology and medicine. This is quite striking when one considers even such unlikely things as the Mössbauer effect and X rays. Within a very short period of their discovery, they had welI-formulated biological and medical applications. The discovery of the laser is no exception. AIthough the theoretical basis for it was established in 1917 by Einstein, the techniques and materials necessary for building a laser were not then available. The laser has revitalized everything connected with optics. It has furnished the experimenter and the teacher with a pseudo-point source. It has translated many a theore...
The increasing use of fiber optics in the field of medicine has created a need for an interdisciplinary perspective of the technology and methods for physicians as well as engineers and biophysicists. This book presents a comprehensive examination of lasers and optical fibers in an hierarchical, three-tier system. Each chapter is divided into three basic sections: the Fundamentals section provides an overview of basic concepts and background; the Principles section offers an in-depth engineering approach; and the Advances section features specific information on systems and biophysical parameters. All those interested in the fields of lasers and fiber optics will find this book fascinating and instructive reading.
Medical practitioners, scientists and graduate students alike will find this exhaustive survey a vital learning tool. It provides a thorough description of the fundamentals and applications in the field of laser-tissue interactions. Basic concepts such as the optical and thermal properties of tissue, the various types of tissue ablation, and optical breakdown and its related effects are treated in detail. The author pays special attention to mathematical tools (Monte Carlo simulations, the Kubelka-Munk theory etc.) and approved techniques (photodynamic therapy, laser-induced interstitial thermotherapy etc.). A section on applications reviews clinically relevant methods in modern medicine using the latest references.
Biophysics is a rapidly-evolving interdisciplinary science that applies theories and methods of the physical sciences to questions of biology. Biophysics encompasses many disciplines, including physics, chemistry, mathematics, biology, biochemistry, medicine, pharmacology, physiology, and neuroscience, and it is essential that scientists working in these varied fields are able to understand each other's research. Comprehensive Biophysics, Nine Volume Set will help bridge that communication gap. Written by a team of researchers at the forefront of their respective fields, under the guidance of Chief Editor Edward Egelman, Comprehensive Biophysics, Nine Volume Set provides definitive introduct...
Here, the editor has gathered a team of international experts to present the latest advances in the field of laser imaging and manipulation techniques. The result is broad coverage of the interactions with biological samples to perform novel optical manipulation operations, both on the cellular and tissue levels. Of interest to physicists working and researching laser tissue mechanisms, cell biologists investigating new imaging and manipulation operation on the cellular level, medical doctors working with new laser therapies and diagnostic tools, as well as engineers developing new technologies in the field of optics and lasers.
Learn about the many biological and medical applications of ultrashort laser pulses. The authors highlight and explain how the briefness of these laser pulses permits the tracing of even the fastest processes in photo-active bio-systems. They also present a variety of applications that rely on the high peak intensity of ultrashort laser pulses. Easy-to-follow examples cover non-linear imaging techniques, optical tomography, and laser surgery.
This two-volume book provides an enriching insight into the laser, covering different types of lasers, the basic science behind the technology, their role at the cutting-edge of current scientific research, and their wide-ranging applications. With just high school physics as a prerequisite and favoring qualitative yet scientifically sound explanations over high-level mathematics, this book is aimed at a broad spectrum of readers in physics, chemistry, engineering, medicine, and biology. Its engaging and lucid presentation is enhanced with plenty of illustrations, making the world of the laser accessible to undergraduate students in the sciences and any other inquisitive readers with high sc...