You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The future of cancer research and the development of new therapeutic strategies rely on our ability to convert biological and clinical questions into mathematical models—integrating our knowledge of tumour progression mechanisms with the tsunami of information brought by high-throughput technologies such as microarrays and next-generation sequencing. Offering promising insights on how to defeat cancer, the emerging field of systems biology captures the complexity of biological phenomena using mathematical and computational tools. Novel Approaches to Fighting Cancer Drawn from the authors’ decade-long work in the cancer computational systems biology laboratory at Institut Curie (Paris, Fr...
The 5th Transactions on Computational Systems Biology volume, edited by Gordon Plotkin, features carefully selected and enhanced contributions initially presented at the 2005 IEEE International Conference on Granular Computing. The 9 papers selected for this special issue discuss various aspects of computational methods, algorithm and techniques in bioinformatics such as gene expression analysis, biomedical literature mining and natural language processing, protein structure prediction, biological database management and biomedical information retrieval.
Systems Biology is an approach to biology that involves understanding the complexity of interactions among biological entities within a systemic whole. The goal is to understand the emergence of physiological or functional properties. Symbolic Approaches to Modeling and Analysis of Biological Systems presents contributions of formal methods from computer science for modeling the dynamics of biological systems. It deals more specifically with symbolic methods, i.e. methods that can establish the qualitative properties of models. This book presents different approaches related to semantics, language, modeling and their link with data, and allows us to examine the fundamental problems and challenges that biological systems are facing. The first part of the book presents works that rely on various available data to build models, while the second part gathers contributions surrounding issues of semantics and formal methods.
Mathematical models have become invaluable tools for understanding the intricate dynamic behavior of complex biochemical and biological systems. Among computational strategies, logical modeling has been recently gaining interest as an alternative approach to address network dynamics. Due to its advantages, including scalability and independence of kinetic parameters, the logical modeling framework is becoming increasingly popular to study the dynamics of highly interconnected systems, such as cell cycle progression, T cell differentiation and gene regulation. Novel tools and standards have been developed to increase the interoperability of logical models, which can now be employ to respond a variety of biological questions. This Research Topic brings together the most recent and cutting-edge approaches in the area of logical modeling including, among others, novel biological applications, software development and model analysis techniques.
Describes important modelling and computational methods for systems biology research to enable practitioners to select and use the most suitable technique Systems Biology Modelling and Analysis provides an overview of state-of-the-art techniques and introduces related tools and practices to formalize models and automate reasoning for systems biology. The authors present and compare the main formal methods used in systems biology for modelling biological networks, including discussion of their advantages, drawbacks, and main applications. Each chapter includes an intuitive presentation of the specific formalism, a brief history of the formalism and of its applications in systems biology, a fo...
The success of individualized medicine, advanced crops, and new and sustainable energy sources requires thoroughly annotated genomic information and the integration of this information into a coherent model. A thorough overview of this field, Genome Annotation explores automated genome analysis and annotation from its origins to the challenges of next-generation sequencing data analysis. The book initially takes you through the last 16 years since the sequencing of the first complete microbial genome. It explains how current analysis strategies were developed, including sequencing strategies, statistical models, and early annotation systems. The authors then present visualization techniques ...
Pattern Formation in Morphogenesis is a rich source of interesting and challenging mathematical problems. The volume aims at showing how a combination of new discoveries in developmental biology and associated modelling and computational techniques has stimulated or may stimulate relevant advances in the field. Finally it aims at facilitating the process of unfolding a mutual recognition between Biologists and Mathematicians of their complementary skills, to the point where the resulting synergy generates new and novel discoveries. It offers an interdisciplinary interaction space between biologists from embryology, genetics and molecular biology who present their own work in the perspective of the advancement of their specific fields, and mathematicians who propose solutions based on the knowledge grasped from biologists.
This work shows how the cellular Potts model can be used as a framework for model building and how extended models can achieve even better biological practicality, accuracy, and predictive power. It focuses on ways to integrate and interface the basic cellular Potts model at the mesoscopic scale with approaches that accurately model microscopic dynamics. These extensions are designed to create a nested and hybrid environment, where the evolution of a biological system is realistically driven by the constant interplay and flux of information between the different levels of description.
The massive amount of nonstandard high-dimensional brain imaging data being generated is often difficult to analyze using current techniques. This challenge in brain image analysis requires new computational approaches and solutions. But none of the research papers or books in the field describe the quantitative techniques with detailed illustrations of actual imaging data and computer codes. Using MATLAB® and case study data sets, Statistical and Computational Methods in Brain Image Analysis is the first book to explicitly explain how to perform statistical analysis on brain imaging data. The book focuses on methodological issues in analyzing structural brain imaging modalities such as MRI...
Transcription regulation is a complex process that can be considered and investigated from different perspectives. Traditionally and due to technical reasons (including the evolution of our understanding of the underlying processes) the main focus of the research was made on the regulation of expression through transcription factors (TFs), the proteins directly binding to DNA. On the other hand, intensive research is going on in the field of chromatin structure, remodeling and its involvement in the regulation. Whatever direction we select, we can speak about several levels of regulation. For instance, concentrating on TFs, we should consider multiple regulatory layers, starting with signali...