You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Plants constantly face many kinds of abiotic and biotic stresses. One of the major threats is from many plant fungal, oomycete, viral, bacterial and nematode pathogens. Plant diseases caused by these pathogens reduce crop yield by 10-15% worldwide every year. Throughout the human history, plant diseases are responsible for many famines including the infamous Irish Potato Famine. Besides the negative impact on the yield, the quality of the infected crop will be adversely affected and the toxins produced by plant pathogens pose threat to human health. During the co-evolution between plants and pathogens, plants developed elegant defense system against pathogen infection and plant pathogens deploy a variety of strategies to suppress plant innate immunity. A deeper understanding the molecular mechanisms on the activation of plant defense in plants and suppression of plant defense by plant pathogens will be crucial to develop effective ways to minimize the detrimental effects from plant diseases on human beings. This Research Topic aims to increase our understanding on the molecular interactions between plants and pathogens.
The field of proteomics has advanced considerably over the past two decades. The ability to delve deeper into an organism’s proteome, identify an array of post-translational modifications and profile differentially abundant proteins has greatly expanded the utilization of proteomics. Improvements to instrumentation in conjunction with the development of these reproducible workflows have driven the adoption and application of this technology by a wider research community. However, the full potential of proteomics is far from being fully exploited in plant biology and its translational application needs to be further developed. In 2011, a group of plant proteomic researchers established the ...
The cell wall is a complex structure mainly composed of cellulose microfibrils embedded in a cohesive hemicellulose and pectin matrix. Cell wall structural proteins, enzymes and their inhibitors are also essential components of plant cell walls. They are involved in the cross-link of cell wall polysaccharides, wall structure, and the perception and signaling of defense-related elicitors at the cell surface. In the outer part of the epidermal cells, the polysaccharides are coated by the cuticle, consisting of hydrophobic cutin, suberin and wax layers. Lignin, a macromolecule composed of highly cross-linked phenolic molecules, is a major component of the secondary cell wall. The cell wall is t...
Plant Proteomics highlights rapid progress in this field, with emphasis on recent work in model plant species, sub-cellular organelles, and specific aspects of the plant life cycle such as signaling, reproduction and stress physiology. Several chapters present a detailed look at diverse integrated approaches, including advanced proteomic techniques combined with functional genomics, bioinformatics, metabolomics and molecular cell biology, making this book a valuable resource for a broad spectrum of readers.
None
Conceived with the aim of sorting fact from fiction over genetically modified (GM) crops, this book brings together the knowledge of 30 specialists in the field of transgenic plants. It covers the generation and detection of these plants as well as the genetic traits conferred on transgenic plants. In addition, the book looks at a wide variety of crops, ornamental plants and tree species that are subject to genetic modifications, assessing the risks involved in genetic modification as well as the potential economic benefits of the technology in specific cases. The book’s structure, with fully cross-referenced chapters, gives readers a quick access to specific topics, whether that is comprehensive data on particular species of ornamentals, or coverage of the socioeconomic implications of GM technology. With an increasing demand for bioenergy, and the necessary higher yields relying on wider genetic variation, this book supplies all the technical details required to move forward to a new era in agriculture.
Assists policymakers in evaluating the appropriate scientific methods for detecting unintended changes in food and assessing the potential for adverse health effects from genetically modified products. In this book, the committee recommended that greater scrutiny should be given to foods containing new compounds or unusual amounts of naturally occurring substances, regardless of the method used to create them. The book offers a framework to guide federal agencies in selecting the route of safety assessment. It identifies and recommends several pre- and post-market approaches to guide the assessment of unintended compositional changes that could result from genetically modified foods and research avenues to fill the knowledge gaps.
Plant Transformation Technologies is a comprehensive, authoritative book focusing on cutting-edge plant biotechnologies, offering in-depth, forward-looking information on methods for controlled and accurate genetic engineering. In response to ever-increasing pressure for precise and efficient integration of transgenes in plants, many new technologies have been developed. With complete coverage of these technologies, Plant Transformation Technologies provides valuable insight on current and future plant transformation technologies. With twenty-five chapters written by international experts on transformation technologies, the book includes new information on Agrobacterium, targeting transgenes into plant genomes, and new vectors and market systems. Including both review chapters and protocols for transformation, Plant Transformation Technologies is vitally important to graduate students, postdoctoral students, and university and industry researchers.