You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book presents the fundamental numerical techniques used in engineering, applied mathematics, computer science, and the physical and life sciences in a way that is both interesting and understandable. Using a wide range of examples and problems, this book focuses on the use of MathCAD functions and worksheets to illustrate the methods used when discussing the following concepts: solving linear and nonlinear equations, numerical linear algebra, numerical methods for data interpolation and approximation, numerical differentiation and integration, and numerical techniques for solving differential equations. For professionals in the fields of engineering, mathematics, computer science, and physical or life sciences who want to learn MathCAD functions for all major numerical methods.
"This book is distinctive in that it implements nodes and links as base objects and then composes them into four different kinds of neural networks. Roger's writing is clear....The text and code are both quite readable. Overall, this book will be useful to anyone who wants to implement neural networks in C++ (and, to a lesser extent, in other object-oriented programming languages.)...I recommend this book to anyone who wants to implement neural networks in C++."--D.L. Chester, Newark, Delaware in COMPUTING REVIEWSObject-Oriented Neural Networks in C++ is a valuable tool for anyone who wants to understand, implement, or utilize neural networks. This book/disk package provides the reader with ...
This book present the fundamental numerical techniques used in engineering, applied mathematics, computer science, and the physical and life sciences in a manner that is both interesting and understandable. Numerical Analysis with Applications and Algorithms includes comprehensive coverage of solving nonlinear equations of a single variable, numerical linear algebra, nonlinear functions of several variables, numerical methods for data interpolations and approximation, numerical differentiation and integration, and numerical techniques for solving differential equations. This book is useful as a reference for self study.
Artificial neural networks are nonlinear mapping systems whose structure is loosely based on principles observed in the nervous systems of humans and animals. The basic idea is that massive systems of simple units linked together in appropriate ways can generate many complex and interesting behaviors. This book focuses on the subset of feedforward artificial neural networks called multilayer perceptrons (MLP). These are the mostly widely used neural networks, with applications as diverse as finance (forecasting), manufacturing (process control), and science (speech and image recognition). This book presents an extensive and practical overview of almost every aspect of MLP methodology, progressing from an initial discussion of what MLPs are and how they might be used to an in-depth examination of technical factors affecting performance. The book can be used as a tool kit by readers interested in applying networks to specific problems, yet it also presents theory and references outlining the last ten years of MLP research.
Artificial Intelligence Illuminated presents an overview of the background and history of artificial intelligence, emphasizing its importance in today's society and potential for the future. The book covers a range of AI techniques, algorithms, and methodologies, including game playing, intelligent agents, machine learning, genetic algorithms, and Artificial Life. Material is presented in a lively and accessible manner and the author focuses on explaining how AI techniques relate to and are derived from natural systems, such as the human brain and evolution, and explaining how the artificial equivalents are used in the real world. Each chapter includes student exercises and review questions, and a detailed glossary at the end of the book defines important terms and concepts highlighted throughout the text.
There are many uncertainties in the real world. Fuzzy theory treats a kind of uncertainty called fuzziness, where it shows that the boundary of yes or no is ambiguous and appears in the meaning of words or is included in the subjunctives or recognition of human beings. Fuzzy theory is essential and is applicable to many systems -- from consumer products like washing machines or refrigerators to big systems like trains or subways. Recently, fuzzy theory has been a strong tool for combining new theories (called soft computing) such as genetic algorithms or neural networks to get knowledge from real data. This introductory book enables the reader to understand easily what fuzziness is and how one can apply fuzzy theory to real problems -- which explains why it was a best-seller in Japan.