You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume is an introduction to interfacial phenomena. It collects the lecture notes from a one month Summer school in Les Houches. The courses and the notes are intended to be especially useful for master and PhD students as well as young researchers.
1. E. Marder, Experimenting with theory -- 2. A. Borysuk and J. Rinzel, Understanding neuronal dynamics by geometrical dissection of minimal models -- 3. D. Terman, Geometry singular perturbation analysis of neuronal dynamics -- 4. G. Mato, Theory of neural synchrony -- 5. M. Shelley, Some useful numerical techniques for simulating integrate-and-fire networks -- 6. D. Golomb, Propagation of pulses in cortical networks: the single-spike approximation -- 7. M. Tsodyks, Activity-dependent transmission in neocortical synapses -- 8. H. Sompolinsky and J. White, Theory of large recurrent networks: from spikes to behavior -- 9. C. van Vreeswijk, Irregular activity in large networks of neurons -- 10. N. Brunel, Network models of memory -- 11. P. Bressloff, Pattern formation in visual cortex -- 12. F. Wolf, Symmetry breaking and pattern selection in visual cortical development -- 13. A. Treves and Y. Roudi, On the evolution of the brain -- 14. E. Brown, Theory of point processes for neural syst ...
The proceedings of the 2005 les Houches summer school on Mathematical Statistical Physics give and broad and clear overview on this fast developing area of interest to both physicists and mathematicians. - Introduction to a field of math with many interdisciplinary connections in physics, biology, and computer science - Roadmap to the next decade of mathematical statistical mechanics - Volume for reference years to come
Presents the lecture notes of the Les Houches Summer School on Quantum entanglement and information processing. This book aims to establish connections between the communities of quantum optics and of quantum electronic devices working in the area of quantum computing. It is useful for graduate students with a basic knowledge of quantum mechanics.
Low-dimensional statistical models are instrumental in improving our understanding of emerging fields, such as quantum computing and cryptography, complex systems, and quantum fluids. This book of lectures by international leaders in the field sets these issues into a larger and more coherent theoretical perspective than is currently available.
What is a quantum machine? Can we say that lasers and transistors are quantum machines? After all, physicists advertise these devices as the two main spin-offs of the understanding of quantum physics. In a true quantum machine, the signal collective variables must themselves be treated as quantum operators. Other engineered quantum systems based on natural, rather than artificial, degrees of freedom can also qualify as quantum machines. This book provides the basic knowledge needed to understand and investigate the physics of these novel systems.
There has been recently some interdisciplinary convergence on a number of precise topics which can be considered as prototypes of complex systems. This convergence is best appreciated at the level of the techniques needed to deal with these systems, which include: 1) A domain of research around a multiple point where statistical physics, information theory, algorithmic computer science, and more theoretical (probabilistic) computer science meet: this covers some aspects of error correcting codes, stochastic optimization algorithms, typical case complexity and phase transitions, constraint satisfaction problems. 2) The study of collective behavior of interacting agents, its impact on understa...
The aim of the book is to familiarize the new generation of PhD students and postdoctoral fellows with the principles and methods of modern lattice field theory, which aims to resolve fundamental, non-perturbative questions about QCD without uncontrolled approximations.
This book fully covers all aspects -- historical, theoretical, and experimental -- of the fields of quantum optomechanics and nanomechanics. These are essential parts of modern physics research, and relate to gravitational-wave detection (the subject of the Physics Nobel Prize 2017), and quantum information.
This book collects lectures and seminars given at the Les Houches Summer School 2008 on Long-Range Interacting Systems. It reviews state-of-the-art developments in this field, looking at problems of probability, transport theory, statistical mechanics, condensed matter physics, astrophysics and cosmology, physics of plasmas, and hydrodynamics.