You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Surveying the most influential developments in the field, this proceedings reviews the latest research on algebras and their representations, commutative and non-commutative rings, modules, conformal algebras, and torsion theories.The volume collects stimulating discussions from world-renowned names including Tsit-Yuen Lam, Larry Levy, Barbara Osofsky, and Patrick Smith.
Peterson's Graduate Programs in Mathematics contains a wealth of information on colleges and universities that offer graduate work in Applied Mathematics, Applied Statistics, Biomathematics, Biometry, Biostatistics, Computational Sciences, Mathematical and Computational Finance, Mathematics, and Statistics. The institutions listed include those in the United States, Canada, and abroad that are accredited by U.S. accrediting bodies. Up-to-date information, collected through Peterson's Annual Survey of Graduate and Professional Institutions, provides valuable information on degree offerings, professional accreditation, jointly offered degrees, part-time and evening/weekend programs, postbaccal...
This volume contains the proceedings of a conference in honor of Goro Azumaya's seventieth birthday, held at Indiana University of Bloomington in May 1990. Professor Azumaya, who has been on the faculty of Indiana University since 1968, has made many important contributions to modern abstract algebra. His introduction and investigation of what have come to be known as Azumaya algebras subsequently stimulated much research on such rings and algebras, as well as applications to geometry and number theory. In addition to honoring Professor Azumaya's contributions, the conference was intended to stimulate interaction among three areas of his research interests; Azumaya algebras, group and Hopf algebra actions, and module theory. Aimed at researchers in algebra, this volume contains contributions by some of the leaders in these areas.
This memoir completes the series of papers beginning with [KL1,KL2], showing that, for a commutative noetherian ring $\Lambda$, either the category of $\Lambda$-modules of finite length has wild representation type or else we can describe the category of finitely generated $\Lambda$-modules, including their direct-sum relations and local-global relations. (There is a possible exception to our results, involving characteristic 2.)
In this memoir, we prove that the universal Teichmuller space $T(1)$ carries a new structure of a complex Hilbert manifold and show that the connected component of the identity of $T(1)$ -- the Hilbert submanifold $T {0 (1)$ -- is a topological group. We define a Weil-Petersson metric on $T(1)$ by Hilbert space inner products on tangent spaces, compute its Riemann curvature tensor, and show that $T(1)$ is a Kahler-Einstein manifold with negative Ricci and sectional curvatures. We introduce and compute Mumford-Miller-Morita characteristic forms for the vertical tangent bundle of the universal Teichmuller curve fibration over the universal Teichmuller space. As an application, we derive Wolper...
"Volume 183, number 864 (end of volume)."
A collection of articles embodying the work presented at the 1991 Methods in Module Theory Conference at the University of Colorado at Colorado Springs - facilitating the explanation and cross-fertilization of new techniques that were developed to answer a variety of module-theoretic questions.
Intends to prove the monodromy conjecture for the local Igusa zeta function of a quasi-ordinary polynomial of arbitrary dimension defined over a number field. In order to do it, this title computes the local Denef-Loeser motivic zeta function $Z_{\text{DL}}(h, T)$ of a quasi-ordinary power series $h$ of arbitrary dimension
Studies the correlation of holes in random lozenge (i.e., unit rhombus) tilings of the triangular lattice. This book analyzes the joint correlation of these triangular holes when their complement is tiled uniformly at random by lozenges.
Intends to prove that higher Franz-Reidemeister (FR) torsion satisfies the transfer property and a formula known as the 'Framing Principle' in full generality. This title uses these properties to compute the higher FR-torsion for various smooth bundles with oriented closed even dimensional manifold fibers.