You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This handbook updates the most fast-moving research areas of porous silicon research, introduces a range of brand new topics not reviewed before and is even more inclusive of worldwide centres of expertise. Rapid advances are being made in porous silicon anodes for lithium batteries, biodegradable nanoparticles and nanoneedles for medical therapy and imaging, energetics and bio-diagnostic techniques. A number of additional characterization and processing techniques are also reviewed for the first time. Experts from 10 additional countries are involved in the 2nd edition: China, Vietnam, Singapore, Malaysia, Saudi Arabia, Turkey, Netherlands, Switzerland, Belarus, and Brazil, making more than 40 countries in total. The handbook therefore covers expertise from every continent. Another new feature is a review dedicated to industrial activity. This second edition endeavours to provide the community with a truly comprehensive database and up-to-date commentary on this versatile nanostructured material.
Made to Measure introduces a general audience to one of today's most exciting areas of scientific research: materials science. Philip Ball describes how scientists are currently inventing thousands of new materials, ranging from synthetic skin, blood, and bone to substances that repair themselves and adapt to their environment, that swell and flex like muscles, that repel any ink or paint, and that capture and store the energy of the Sun. He shows how all this is being accomplished precisely because, for the first time in history, materials are being "made to measure": designed for particular applications, rather than discovered in nature or by haphazard experimentation. Now scientists liter...
The papers included in this issue of ECS Transactions were originally presented in the symposium ¿Nanoporous Materials: Chemistry and Applications¿, held during the 211th meeting of The Electrochemical Society, in Chicago, Illinois, from May 6 to 11, 2007.
Providing critical analysis of emerging and well-established topics, this book is essential reading for anyone wanting to keep up to date with the literature on photochemistry and its applications. Volume 49 combines reviews on the latest advances in photochemical research with specific highlights in the field. The first section includes periodical reports of the recent literature on physical and inorganic aspects, including reviews of the molecules employed as dyes in art, light induced reactions in cryogenic matrices, photobiological systems studied by time-resolved infrared spectroscopy and photophysics, and photochemistry of transition metal complexes. This selection is completed by revi...
None
Nanosilicon: Properties, Synthesis, Applications, Methods of Analysis and Control examines the latest developments on the physics and chemistry of nanosilicon. The book focuses on methods for producing nanosilicon, its electronic and optical properties, research methods to characterize its spectral and structural properties, and its possible applications. The first part of the book covers the basic properties of semiconductors, including causes of the size dependence of the properties, structural and electronic properties, and physical characteristics of the various forms of silicon. It presents theoretical and experimental research results as well as examples of porous silicon and quantum d...
By means of electrochemical treatment, crystalline silicon can be permeated with tiny, nanostructured pores that entirely change the characteristics and properties of the material. One prominent example of this can be seen in the interaction of porous silicon with living cells, which can be totally unwilling to settle on smooth silicon surfaces but readily adhere to porous silicon, giving rise to great hopes for such future applications as programmable drug delivery or advanced, braincontrolled prosthetics. Porous silicon research is active in the fields of sensors, tissue engineering, medical therapeutics and diagnostics, photovoltaics, rechargeable batteries, energetic materials, photonics...
Engineering of nanophase materials and devices is of vital interest in electronics, semiconductors and optics, catalysis, ceramics and magnetism. Research associated with nanoparticles has widely spread and diffused into every field of scientific research, forming a trend of nanocrystal engineered materials. Electrochemical methods are widely used for the preparation of nanoparticles and the electrochemical properties of such nanomaterials are most relevant for their applications. This comprehensive reference work will appeal to advanced graduate students and researchers in the field specialized in electrochemistry, materials physics and materials science.
In der Chemie geht es überwiegend um die Frage: Wie? Wie wird primärer Alkohol hergestellt? Durch Reaktion eines Grignard-Reagenz mit Formaldehyd. In der physikalischen Chemie lautet die Frage: Warum? Das Grignard-Reagenz und Formaldehyd tanzen auf Molekülebene. Man spricht von einem Reaktionsmechanismus, bei dem stärkere Verbindungen schwächere Verbindungen vom Parkett fegen. Wenn Sie wissen möchten, warum das so ist, ist dieses Buch genau richtig. Physical Chemistry: How Chemistry Works verfolgt einen neuen Ansatz bei der Vermittlung der Lerninhalte rund um die physikalische Chemie. Dieses moderne Lehrbuch soll Chemiestudenten im Hauptstudium für das Fachgebiet begeistern und auf di...
The book provides an overview of the fascinating spectrum of semiconductor physics, devices and applications, presented from a historical perspective. It covers the development of the subject from its inception in the early nineteenth century to the recent millennium. Written in a lively, informal style, it emphasizes the interaction between pure scientific push and commercial pull, on the one hand, and between basic physics, materials, and devices, on the other. It also sets the various device developments in the context of systems requirements and explains how such developments met wide ranging consumer demands. It is written so as to appeal to students at all levels in physics, electrical engineering, and materials science, to teachers, lecturers, and professionals working in the field, as well as to a non-specialist scientific readership.