You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book covers various aspects of lasers in materials science, including a comprehensive overview on basic principles of laser-materials interactions and applications enabled by pulsed laser systems. The material is organized in a coherent way, providing the reader with a harmonic architecture. While systematically covering the major current and emerging areas of lasers processing applications, the Volume provides examples of targeted modification of material properties achieved through careful control of the processing conditions and laser irradiation parameters. Special emphasis is placed on specific strategies aimed at nanoscale control of material structure and properties to match the stringent requirements of modern applications. Laser fabrication of novel nanomaterials, which expands to the domains of photonics, photovoltaics, sensing, and biomedical applications, is also discussed in the Volume. This book assembles chapters based on lectures delivered at the Venice International School on Lasers in Materials Science which was held in Isola di San Servolo, Venice, Italy, in July, 2012.
This book provides an overview on nanosecond and ultra-short laser-induced phenomena and the related diagnostics. It grew from the lectures of the International School "Laser-surface interactions for new materials production" held in July 2008.
This book covers the state of the art of laser micro- and nanotechnology. The physical fundamentals of different processes and the application are presented. The book deals with different materials like phase change and memory alloys, thin films, polymers etc. New phenomena and mechanisms of laser-matter interaction in nano-domains are explained. This book is helpful for students, postgraduates, engineers and researches working not only in the field of laser microtechnology but also in high-tech industry, like photonics, microelectronics, information technology.
This book provides a single-source reference on the use of carbon nanotubes (CNTs) as interconnect material for horizontal, on-chip and 3D interconnects. The authors demonstrate the uses of bundles of CNTs, as innovative conducting material to fabricate interconnect through-silicon vias (TSVs), in order to improve the performance, reliability and integration of 3D integrated circuits (ICs). This book will be first to provide a coherent overview of exploiting carbon nanotubes for 3D interconnects covering aspects from processing, modeling, simulation, characterization and applications. Coverage also includes a thorough presentation of the application of CNTs as horizontal on-chip interconnects which can potentially revolutionize the nanoelectronics industry. This book is a must-read for anyone interested in the state-of-the-art on exploiting carbon nanotubes for interconnects for both 2D and 3D integrated circuits.
This book highlights the mechanical properties of nanomaterials produced by several techniques for various applications. The dislocations observed in specimens obtained in nanomaterials are discussed on the chapter about deformation process. Partial dislocations and grain boundary sliding deformation phenomena in nanomaterial specimens are also deeply discussed. Tests for tension, compression, and hardness are described. The behavior of nanomaterials is compared to macrosize specimens, and the results obtained for different fabrication methods are also compared. The special characteristics of nanomaterials are summarized at the end of the book.
While the field of clusters and nano-structures in the physical sciences has been actively pursued only over the past two decades, nature has known the benefits of the nanoscale for a very long time. The focus of the International Symposium on Clusters and Nano-Assemblies: Physical and Biological Systems was to explore ways in which an understanding of the unique properties of nano-scale biological systems such as proteins, enzyme reactions, RNA, and DNA can help us design novel materials composed of inorganic nano-scale systems, and how techniques developed in the physical sciences can lead to a fundamental understanding of biological systems. Bringing together the expert contributions from the conference, this book deals with the fundamental science and technology of atomic clusters, nano-structures and their assemblies in physical and biological systems. It explores in fascinating detail the manner in which finite size, low dimensionality, and reduced symmetry affect the properties of nano-assemblies.
This book constitutes revised selected papers of the 7th Latin American High Performance Computing Conference, CARLA 2020, held in Cuenca, Ecuador, in September 2020. Due to the COVID-19 pandemic the conference was held in a virtual mode. The 15 revised full papers presented were carefully reviewed and selected out of 36 submissions. The papers included in this book are organized according to the topics on ​High Performance Computing Applications; High Performance Computing and Artificial Intelligence.
The book covers recent advances and progress in understanding both the fundamental science of lasers interactions in materials science, as well as a special emphasis on emerging applications enabled by the irradiation of materials by pulsed laser systems. The different chapters illustrate how, by careful control of the processing conditions, laser irradiation can result in efficient material synthesis, characterization, and fabrication at various length scales from atomically-thin 2D materials to microstructured periodic surface structures. This book serves as an excellent resource for all who employ lasers in materials science, spanning such different disciplines as photonics, photovoltaics, and sensing, to biomedical applications.