You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Liquid propellant rocket engines have propelled all the manned space flights, all the space vehicles flying to the planets or deep space, virtually all satellites, and the majority of medium range or intercontinental range ballistic missiles.
David Altman, James M. Carter, S. S. Penner, Martin Summerfield. High Temperature Equilibrium, Expansion Processes, Combustion of Liquid Propellants, The Liquid Propellants Rocket Engine. Originally published in 1960. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
This book is intended for students and engineers who design and develop liquid-propellant rocket engines, offering them a guide to the theory and practice alike. It first presents the fundamental concepts (the generation of thrust, the gas flow through the combustion chamber and the nozzle, the liquid propellants used, and the combustion process) and then qualitatively and quantitatively describes the principal components involved (the combustion chamber, nozzle, feed systems, control systems, valves, propellant tanks, and interconnecting elements). The book includes extensive data on existing engines, typical values for design parameters, and worked-out examples of how the concepts discussed can be applied, helping readers integrate them in their own work. Detailed bibliographical references (including books, articles, and items from the “gray literature”) are provided at the end of each chapter, together with information on valuable resources that can be found online. Given its scope, the book will be of particular interest to undergraduate and graduate students of aerospace engineering.
Liquid Rocket and Propellants
John Clark tells here, with irreverent and eyewitness immediacy, the story of the search for a power packaging which could be trusted to take man into space. Against a lot of the "laws of nature," as they used to be called, it was a hazardous enterprise with no certainty of success or safety. It is the special virtue of this narrative that it is a primary historical document. John Clark actually helped develop explosive fuels strong enough to negate the relentless restraints of gravity. He worked with and knew dozens of his peers in an enterprise which eventually took men to the moon, missiles to the planets, and satellites to outer space. It is quite a story. The reader will find here that ...
This book concentrates on modeling and numerical simulations of combustion in liquid rocket engines, covering liquid propellant atomization, evaporation of liquid droplets, turbulent flows, turbulent combustion, heat transfer, and combustion instability. It presents some state of the art models and numerical methodologies in this area. The book can be categorized into two parts. Part 1 describes the modeling for each subtopic of the combustion process in the liquid rocket engines. Part 2 presents detailed numerical methodology and several representative applications in simulations of rocket engine combustion.
A revision of the standard text on the basic technology, performance and design rationale of rocket propulsion. After discussing fundamentals, such as nozzle thermodynamics, heat transfer, flight performance and chemical reaction analysis, the book continues with treatments of various types of liquid and solid propellants and rocket testing. It brings together the engineering science disciplines necessary for rocket design: thermodynamics, heat transfer, flight mechanics, chemical reactions and materials behavior. SI units and information on computer-aided testing have also been added.
This is the first book in the literature to cover the development and testing practices for liquid rocket engines in Russia and the former Soviet Union.Combustion instability represents one of the most challenging probelms in the development of propulsion engines. A famous example is the F-1 engines for the first stage of the Saturn V launch vehicles in the Apollo project. More than 2000 full engine tests and a vast number of design modifications were conducted to cure the instability problem.This book contains first-hand information about the testing and development practices for treating liquid rocket combustion-instability problems in Russia and the former Soviet Union. It covers more than 50 years of research, with an emphasis placed on the advances made since 1970.The book was prepared by a former R&D director of the Research Institute of Chemical Engineering, NIICHIMMASH, the largest liquid rocket testing center in the world, and has been carefully edited by three well-known experts in the field.
The great engineering achievement required to overcome most of the challenges and obstacles that prevented turning rocket design from art into science took place in Europe and the United States between the 1930s and the 1950s. With the vast majority of the engines currently in operation developed in the “pre-computer” age, there are new opportunities to update the design methodologies using technology that can now handle highly complex calculations fast. The space sector with an intense focus on efficiency is driving the need for updating, adapting or replacing the old modeling practices with new tools capable of reducing the volume of resources and the time required to complete simulati...