You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Research topics in the book include complex dynamics, minimal surfaces, fluid flows, harmonic, conformal, and polygonal mappings, and discrete complex analysis via circle packing. The nature of this book is different from many mathematics texts: the focus is on student-driven and technology-enhanced investigation. Interlaced in the reading for each chapter are examples, exercises, explorations, and projects, nearly all linked explicitly with computer applets for visualization and hands-on manipulation.
A Mathematician's Practical Guide to Mentoring Undergraduate Research is a complete how-to manual on starting an undergraduate research program. Readers will find advice on setting appropriate problems, directing student progress, managing group dynamics, obtaining external funding, publishing student results, and a myriad of other relevant issues. The authors have decades of experience and have accumulated knowledge that other mathematicians will find extremely useful.
A thespian or cinematographer might define a cameo as a brief appearance of a known figure, while a gemologist or lapidary might define it as a precious or semiprecious stone. This book presents fifty short enhancements or supplements (the cameos) for the first-year calculus course in which a geometric figure briefly appears. Some of the cameos illustrate mainstream topics such as the derivative, combinatorial formulas used to compute Riemann sums, or the geometry behind many geometric series. Other cameos present topics accessible to students at the calculus level but not usually encountered in the course, such as the Cauchy-Schwarz inequality, the arithmetic mean-geometric mean inequality,...
None
Proofs without words (PWWs) are figures or diagrams that help the reader see why a particular mathematical statement is true, and how one might begin to formally prove it true. PWWs are not new, many date back to classical Greece, ancient China, and medieval Europe and the Middle East. PWWs have been regular features of the MAA journals Mathematics Magazine and The College Mathematics Journal for many years, and the MAA published the collections of PWWs Proofs Without Words: Exercises in Visual Thinking in 1993 and Proofs Without Words II: More Exercises in Visual Thinking in 2000. This book is the third such collection of PWWs.
This book contains enrichment material for courses in first and second year calculus, differential equations, modeling, and introductory real analysis. It targets talented students who seek a deeper understanding of calculus and its applications. The book can be used in honors courses, undergraduate seminars, independent study, capstone courses taking a fresh look at calculus, and summer enrichment programs. The book develops topics from novel and/or unifying perspectives. Hence, it is also a valuable resource for graduate teaching assistants developing their academic and pedagogical skills and for seasoned veterans who appreciate fresh perspectives. The explorations, problems, and projects ...
Discovering Discrete Dynamical Systems is a mathematics textbook designed for use in a student-led, inquiry-based course for advanced mathematics majors. Fourteen modules each with an opening exploration, a short exposition and related exercises, and a concluding project guide students to self-discovery on topics such as fixed points and their classifications, chaos and fractals, Julia and Mandelbrot sets in the complex plane, and symbolic dynamics. Topics have been carefully chosen as a means for developing student persistence and skill in exploration, conjecture, and generalization while at the same time providing a coherent introduction to the fundamentals of discrete dynamical systems. T...
For the instructor or student confronting an introductory course in ordinary differential equations there is a need for a brief guide to the key concepts in the subject. Important topics like stability, resonance, existence of periodic solutions, and the essential role of continuation of solutions are often engulfed in a sea of exercises in integration, linear algebra theory, computer programming and an overdose of series expansions. This book is intended as that guide. It is more conceptual than definitive and more light-hearted than pedagogic. It covers key topics and theoretical underpinnings that are necessary for the study of rich topics like nonlinear equations or stability theory. The [Author]; has included a great many illuminating examples and discussions that uncover the conceptual heart of the matter.
Arithmetical Wonderland is intended as an unorthodox mathematics textbook for students in elementary education, in a contents course offered by a mathematics department. The scope is deliberately restricted to cover only arithmetic, even though geometric elements are introduced whenever warranted. For example, what the Euclidean Algorithm for finding the greatest common divisors of two numbers has to do with Euclid is showcased. Many students find mathematics somewhat daunting. It is the [Author];'s belief that much of that is caused not by the subject itself, but by the language of mathematics. In this book, much of the discussion is in dialogues between Alice, of Wonderland fame, and the t...