You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Gas hydrates in their natural environment and for potential industrial applications (Volume 2).
Gas hydrates, or clathrate hydrates, are crystalline solids resembling ice, in which small (guest) molecules, typically gases, are trapped inside cavities formed by hydrogen-bonded water (host) molecules. They form and remain stable under low temperatures – often well below ambient conditions – and high pressures ranging from a few bar to hundreds of bar, depending on the guest molecule. Their presence is ubiquitous on Earth, in deep-marine sediments and in permafrost regions, as well as in outer space, on planets or comets. In addition to water, they can be synthesized with organic species as host molecules, resulting in milder stability conditions: these are referred to as semi-clathra...
Gas hydrates in their natural environment and for potential industrial applications (Volume 2).
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 188. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges presents a multidisciplinary overview of the remarkable emerging diversity of hydrothermal systems on slow spreading ocean ridges in the Atlantic, Indian, and Arctic oceans. When hydrothermal systems were first found on the East Pacific Rise and other Pacific Ocean ridges beginning in the late 1970s, the community consensus held that the magma delivery rate of intermediate to fast spreading was necessary to support black smoker-type high-temperature systems and associated chemosynthetic ecosystems and polymetallic sulfide deposi...
Seafloor fluid and gas emission has been revealed to be a geographically widespread phenomenon in recent years as researchers have discovered new off-axis hydrothermal vent fields and previously unmapped shallow (deltaic, continental shelf) and deep water cold seeps. Seafloor seep emissions play a critical role in global biogeochemical cycles, but also contribute to the development of economically important mineral deposits that are increasingly targeted for exploitation. Hydrothermal vents and cold seeps host unique microbiological and macrofaunal communities that provide clues to life on primordial Earth, and seafloor fluid and gas emissions play a complex role in microbial dispersal, ocean chemistry, plankton dynamics, and possibly global climate. This Research Topic will address the knowledge gaps about the linked chemistry, macro/microbiology, physics, and geology of seafloor emissions and explore both the economic potential and conservation efforts associated with hydrothermal vents and cold seeps.
The energy sector is undergoing unprecedented change. Twenty years ago, the main concern was having enough oil and gas, whereas today, political leaders are faced with the need to reduce the CO2 emissions produced by still-dominant fossil fuels, without being able to totally rely on renewable energies, which are intermittent and whose share in energy production remains low. Geopolitics and Energy Transition 2 examines the energy sector and the state of energy transition continent by continent. North America is rich in resources, while the situation is mixed in South America. Europe advocates transition but remains dependent on imported fossil fuels. The CIS has enormous resources at its disposal and uses them as political weapons. Access to energy is a priority for Africa. Asia is faced with growing energy needs and pollution, which should accelerate energy transition. The Middle East, a champion of hydrocarbons, is launching into solar energy.
The energy sector is undergoing unprecedented change. Twenty years ago, the main concern was having enough oil and gas, whereas today, political leaders are faced with the need to reduce the CO2 emissions produced by still-dominant fossil fuels, without being able to totally rely on renewable energies, which are intermittent and whose share in energy production remains low. Geopolitics and Energy Transition 1 presents the technical aspects of energy and its main characteristics, and outlines the challenges of the energy transition, the conditions for the development of renewable energies and the geopolitical stakes of this transition. It also describes the various energy markets and the consequences of liberalization policies, not forgetting to analyze the structures of the different sectors, while pointing out the fundamental problems of supply security and ways of strengthening it.
Heat Transfer 2 deals with radiation, heat exchangers and flat plate solar collectors. It presents the treatment of radiation in semi-transparent media to be taken into account for insulation or recovery of high temperature waste heat (energy saving in industry), as well as in certain solar applications (energy transition). The numerous solved exercises allow the reader to grasp the whole range of applications, whether in the field of building, transport, materials or the environment. The appendices contain all the data needed to solve the exercises and will be a valuable source of information. This book is designed for masters and engineering students who are interested in all aspects of heat transfer, but also for engineers who will find the bases needed to understand similar phenomena (conduction-convection-radiation), but which require a different form of reflection and approach.
This is the first book of a series aiming at setting the basics for energy engineering. This book presents the fundamentals of heat and mass transfer with a step-by-step approach, based on material and energy balances. While the topic of heat and mass transfer is an old subject, the way the book introduces the concepts, linking them strongly to the real world and to the present concerns, is particular. The scope of the different developments keeps in mind a practical energy engineering view.