You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Researchers working with nonlinear programming often claim "the word is non linear" indicating that real applications require nonlinear modeling. The same is true for other areas such as multi-objective programming (there are always several goals in a real application), stochastic programming (all data is uncer tain and therefore stochastic models should be used), and so forth. In this spirit we claim: The word is multilevel. In many decision processes there is a hierarchy of decision makers, and decisions are made at different levels in this hierarchy. One way to handle such hierar chies is to focus on one level and include other levels' behaviors as assumptions. Multilevel programming is the research area that focuses on the whole hierar chy structure. In terms of modeling, the constraint domain associated with a multilevel programming problem is implicitly determined by a series of opti mization problems which must be solved in a predetermined sequence. If only two levels are considered, we have one leader (associated with the upper level) and one follower (associated with the lower level).
Polynomial extremal problems (PEP) constitute one of the most important subclasses of nonlinear programming models. Their distinctive feature is that an objective function and constraints can be expressed by polynomial functions in one or several variables. Let :e = {:e 1, ... , :en} be the vector in n-dimensional real linear space Rn; n PO(:e), PI (:e), ... , Pm (:e) are polynomial functions in R with real coefficients. In general, a PEP can be formulated in the following form: (0.1) find r = inf Po(:e) subject to constraints (0.2) Pi (:e) =0, i=l, ... ,m (a constraint in the form of inequality can be written in the form of equality by introducing a new variable: for example, P( x) ~ 0 is e...
Bilevel programming problems are hierarchical optimization problems where the constraints of one problem (the so-called upper level problem) are defined in part by a second parametric optimization problem (the lower level problem). If the lower level problem has a unique optimal solution for all parameter values, this problem is equivalent to a one-level optimization problem having an implicitly defined objective function. Special emphasize in the book is on problems having non-unique lower level optimal solutions, the optimistic (or weak) and the pessimistic (or strong) approaches are discussed. The book starts with the required results in parametric nonlinear optimization. This is followed...
This book deals with the theory and applications of the Reformulation- Linearization/Convexification Technique (RL T) for solving nonconvex optimization problems. A unified treatment of discrete and continuous nonconvex programming problems is presented using this approach. In essence, the bridge between these two types of nonconvexities is made via a polynomial representation of discrete constraints. For example, the binariness on a 0-1 variable x . can be equivalently J expressed as the polynomial constraint x . (1-x . ) = 0. The motivation for this book is J J the role of tight linear/convex programming representations or relaxations in solving such discrete and continuous nonconvex progr...
A function is convex if its epigraph is convex. This geometrical structure has very strong implications in terms of continuity and differentiability. Separation theorems lead to optimality conditions and duality for convex problems. A function is quasiconvex if its lower level sets are convex. Here again, the geo metrical structure of the level sets implies some continuity and differentiability properties for quasiconvex functions. Optimality conditions and duality can be derived for optimization problems involving such functions as well. Over a period of about fifty years, quasiconvex and other generalized convex functions have been considered in a variety of fields including economies, man...
The book is intended to be an introduction to critical point theory and its applications to differential equations. Although the related material can be found in other books, the authors of this volume have had the following goals in mind: To present a survey of existing minimax theorems, To give applications to elliptic differential equations in bounded domains, To consider the dual variational method for problems with continuous and discontinuous nonlinearities, To present some elements of critical point theory for locally Lipschitz functionals and give applications to fourth-order differential equations with discontinuous nonlinearities, To study homoclinic solutions of differential equations via the variational methods. The contents of the book consist of seven chapters, each one divided into several sections. Audience: Graduate and post-graduate students as well as specialists in the fields of differential equations, variational methods and optimization.
Optimization in Computational Chemistry and Molecular Biology: Local and Global Approaches covers recent developments in optimization techniques for addressing several computational chemistry and biology problems. A tantalizing problem that cuts across the fields of computational chemistry, biology, medicine, engineering and applied mathematics is how proteins fold. Global and local optimization provide a systematic framework of conformational searches for the prediction of three-dimensional protein structures that represent the global minimum free energy, as well as low-energy biomolecular conformations. Each contribution in the book is essentially expository in nature, but of scholarly treatment. The topics covered include advances in local and global optimization approaches for molecular dynamics and modeling, distance geometry, protein folding, molecular structure refinement, protein and drug design, and molecular and peptide docking. Audience: The book is addressed not only to researchers in mathematical programming, but to all scientists in various disciplines who use optimization methods in solving problems in computational chemistry and biology.
There has been much recent progress in global optimization algo rithms for nonconvex continuous and discrete problems from both a theoretical and a practical perspective. Convex analysis plays a fun damental role in the analysis and development of global optimization algorithms. This is due essentially to the fact that virtually all noncon vex optimization problems can be described using differences of convex functions and differences of convex sets. A conference on Convex Analysis and Global Optimization was held during June 5 -9, 2000 at Pythagorion, Samos, Greece. The conference was honoring the memory of C. Caratheodory (1873-1950) and was en dorsed by the Mathematical Programming Societ...
This book presents recent theoretical and practical aspects in the field of optimization and convex analysis. The topics covered in this volume include: - Equilibrium models in economics. - Control theory and semi-infinite programming. - Ill-posed variational problems. - Global optimization. - Variational methods in image restoration. - Nonsmooth optimization. - Duality theory in convex and nonconvex optimization. - Methods for large scale problems.
This book provides multidisciplinary approaches to smart and sustainable urban ecosystems. Urbanization is a global tendency, and up to 70% of the world population is projected to live in cities by 2050. How will this rapid urbanization alter the face of the world? What are the environmental consequences of megacities’ expansion? What are smart solutions to make life in cities safe, comfortable, and environmentally friendly? These and other important questions are addressed by the conference Smart and Sustainable Cities (SSC). This year’s theme for the conference will be « Sustainable urban ecosystems: challenges and solutions». Megapolises are complex ecosystems. Air and water quality...