You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Lorette Javois' timely new 2nd edition revises and updates her widely acclaimed collection of step-by-step immunocytochemical methods, one that is now used in many biological and biomedical research programs. The methods are designed for researchers and clinicians who wish to visualize molecules in plant or animal embryos, tissue sections, cells, or organelles. In addition to cutting-edge protocols for purifying and preparing antibodies, light microscopic analysis, confocal microscopy, FACS, and electron microscopy, this revised edition contains many new methods for applying immunocytochemical techniques in the clinical laboratory and in combination with in situ hybridization.
The principle that antibodies can be used as cytochemical agents provided they are tagged with suitable markers has been evident for over 50 years. During this time the use of immunocytochemical meth ods has spread to a wide array of biological disciplines. Early applica tions focused on the detection of microbial antigens in tissues, while more recent applications have used monoclonal antibodies to study cell differentiation during embryonic development. For a select few disci plines, volumes have been published focusing on the specific applica tion of immunocytochemical techniques to that discipline. What distinguishes the present book, Immunocytochemical Meth ods and Protocols, from earlier books is its broad appeal to researchers in all disciplines, including those in both research and clinical settings. The methods and protocols presented here are designed to be general in their application and the accompanying "Notes" provide invaluable assistance in adapting or troubleshooting the protocols. Interspersed throughout the book are chapters providing overviews of select topics related to immunocytochemistry.
An authoritative team of investigators illuminate the core bioanalytical techniques used every day in their own laboratories, and laboratories throughout the world. These highly experienced scientists fully explain both the theory behind, and the application of, these key techniques, and include extensive references for those seeking detailed laboratory protocols. The techniques covered range from the extraction, separation, detection, and characterization of nucleic acids to gene cloning and library production, mapping, expression, transgenesis, differential display, and DNA profiling, to name a few. Numerous key protein methods, as well as support and related techniques, are also included. The goal is to provide established scientists and novices who are new to these techniques with a deeper understanding of the widest variety of biotechniques and their applications.
An integrated reference which could form the basis for advanced courses on development or become a resource for individuals teaching basic courses. Following an introduction by the volume editors, the 11 chapters represent 11 different systems, arranged phylogenetically, beginning with prokaryotic s
Gene transfer is an essential technology for improving our under standing of gene structure and function. Although there are many meth ods by which DNA may be introduced into cells—including heat and chemical treatments, and microinjection—electroporation has been found to be the most versatile gene transfer technique. Electroporation is effective with a wide variety of cell types, including those that are difficult to transform by other means. For many cell types, electroporation is either the most efficient or the only means known to effect gene transfer. The early and broad success of electric field-medi ated DNA transfer soon prompted researchers to investigate electroporation for tr...
This comprehensive collection of recently developed methods for producing new antibody reagents by immunization and recombinant DNA techniques contains ready-to-use protocols that illuminate current areas of research on antibody structure, functions, and applications. The methods can be applied in basic immunological studies involving antibody specificity, catalysis, and evolution, and in the isolation of rare antibodies by phage display technology and the engineering of new antibodies by mutagenesis. They offer insight into new ways of developing clinically useful antibody reagents. Antibody Engineering Protocols constitutes a single-source volume for laboratory investigators who want to minimize extensive literature and methodology searches and to work productively in their fields with reproducible step-by-step protocols.
DNA sequencing has become increasingly efficient over the years, resulting in an enormous increase in the amount of data gener ated. In recent years, the focus of sequencing has shifted, from being the endpoint of a project, to being a starting point. This is especially true for such major initiatives as the human genome project, where vast tracts of DNA of unknown function are sequenced. This sheer volume of available data makes advanced computer methods essen tial to analysis, and a familiarity with computers and sequence analy sis software a vital requirement for the researcher involved with DNA sequencing. Even for nonsequencers, a familiarity with sequence analysis software can be impor...
This cutting-edge collection of step-by-step experimental protocols demonstrates
An unprecedented collection of all the most up-to-date techniques for gene isolation and mapping, including the latest methods for gene characterization using database analyses. This collection of thoroughly tested recipes also includes chapters for the computational analysis of novel cDNA sequences with up-to-the-minute information on basic sequence analysis, sequence similarity searches, exon detection and similarity searches, and the prediction of gene function. Its state-of-the-art methods constitute indispensable tools for all scientists engaged in the search for specific disease genes, or in the general advancement of the human genome project.
The first libraries of complementary DNA (cDNA) clones were con structed in the mid-to-late 1970s using RNA-dependent DNA polymerase (reverse transcriptase) to convert poly A* mRNA into double-stranded cDNA suitable for insertion into prokaryotic vectors. Since then cDNA technology has become a fundamental tool for the molecular biologist and at the same time some very significant advances have occurred in the methods for con structing and screening cDNA libraries. It is not the aim of cDNA Library Protocols to give a comprehensive review of all cDNA library-based methodologies; instead we present a series of up-to-date protocols that together should give a good grounding of proce dures asso...